School of Engineering and Applied Science Building

Miami University, Oxford, OH

Final Report

April 9, 2008

Jonathan Kirk

AE 482 - Senior Thesis

The Pennsylvania State University

Faculty Advisor: Dr. Andres Lepage

Engineering and Applied Sciences Building

Miami University Oxford, Ohio

General Statistics

Size: 82,661 square feet

Above grade: (3) floors of classrooms, offices, and labs, plus (1) mechanical floor

Below grade: (3) levels of underground parking Cost: \$23,651,159

Delivery Method: Design-Bid-Build

Construction Date: October 2004-June 2006

The style of the building was largely based upon the style of existing Benton Hall, a brick built in 1969, to which the new School of Engineering and Applied Science building is attached by a skywalk at the second and third level. The School of Engineering and Applied Sciences is generally a long, narrow building broken into two main areas connected by a skywalk in its center similar to the one that connects it to Benton Hall. In the back of the building, a new engineering quad is being renovated where the campus ice rink was previously located.

Structural

Composite floor system with 6½" concrete slab on metal deck supported by steel beams ranging from W14 to W27

W12 steel columns provide gravity load resistance above grade

Below grade garage is C.I.P. mild reinforced concrete with 12" thick slabs on columns ranging from 24"x24" to 24"x48"

Braced frame In North-South (short) direction with HSS steel

Moment frame in East-West (long) direction with partially restrained moment connections

Spread footing foundation under main building with drilled piers under exterior entrance plaza

Project Team

Owner: Mlami University

General Contractor: Monarch Construction Electrical Contractor: Lake Erie Electric HVAC Contractor: Triton Services, Inc.

Fire Protection Contractor: Dalmatian Fire, Inc.
Plumbing Contractor: The Nelson Stark Company
Project Manager: Miami University Planning and Con-

struction Division

Architect: Burt Hill Kosar Rittleman Associates

Associate Architect: SFA

Site/Civil Engineer: Burt Hill Kosar Rittleman Associates

Structural Engineer: THP Limited

MEP Engineer: Burt Hill Kosar Rittleman Associates

Electrical & Lighting

480/277Y, 3 Phase, 4 Wire service

Individual 480 to 208/120V step-down transformers in every electrical room

Natural gas powered emergency generator on site Various lighting fixtures including recessed fluorescent troffers, hanging fluorescent pendants, , recessed

Mechanical

Fourth floor mechanical penthouse
Two custom variable volume AHUs
rated at 41,000 CFM and
46,000 CFM supply central
steam and chilled water heating
and cooling to all classrooms and
offices most of the year

Secondary chilled water unit for use by data control centers in the winter

Ductless Individual VAV boxes distribute airto grouped zones of classrooms and offices

Domestic hot water supplied by a steamed hot water converter

Jonathan Kirk

Structural Option

http://www.engr.psu.edu/ae/thesls/portfollos/2008/jek283/

Table of Contents

Executive Summary	4
Building Background	5
Architectural	6
Existing Structural System	6
Structural Depth	12
Design Goals and Procedures	12
Design Codes	13
Gravity Load Resisting System	14
Lateral Load Resisting System	17
Building Enclosures Breadth	24
Existing Conditions	24
Proposed Redesign	25
Construction Management Breadth	29
Cost Analysis and Comparison	29
Schedule Analysis and Comparison	30
Further Considerations	32
Conclusions and Recommendations	34
Acknowledgements	35
Appendices	36
Appendix A – Plans and Diagrams	36
Appendix B – Building Loads	40
Appendix C – Structural Depth	47
Appendix D – Building Enclosures Breadth	63
Appendix F – Construction Management Breadth	70

Executive Summary

Miami (OH) University's School of Engineering and Applied Science Building consists of four stories above grade, three of which are designated for classrooms and laboratories for students, as well as faculty offices. The building also has three levels of below-grade parking. The department's new home will connect to the existing Benton Hall by way of a skywalk at the 2nd through 4th floor. The architectural voice of the new building is largely based upon the aesthetic concepts of Benton Hall.

The depth of this report will evaluate the feasibility redesigning the structural system from the existing composite slab on steel framing to a system which is entirely prefabricated to allow for a shorter construction schedule. To accomplish this, precast hollowcore planks and a supporting steel frame were designed to carry the building's gravity and lateral loads. By keeping the layout of the steel framing the same, the architecture of the building remains unchanged, allowing for open lab and office spaces.

To further accelerate the construction schedule, it is proposed to replace the existing steel stud wall faced in brick veneer with precast concrete insulated sandwich wall panels with a "thin brick" façade as a building enclosures breadth. This will not only save time in actually erecting the walls, but will also allow other trades to begin their work in the interior sooner, which could further reduce the length of the schedule's critical path.

As a construction management breadth, the construction cost and schedule of the proposed structural and building enclosure changes will be compared to that of the original design to evaluate the cost and schedule implications.

After analyzing the proposed changes, it is clear the proposed prefabricated system is indeed a viable option that would allow for a more flexible and reduced schedule if a sooner turnover date were required. However, given the circumstances of the actual project, the increased cost of the redesigned systems makes the existing systems the best choices for the building. However, the precast elements require a longer lead time for production and are slightly more expensive than the original design elements.

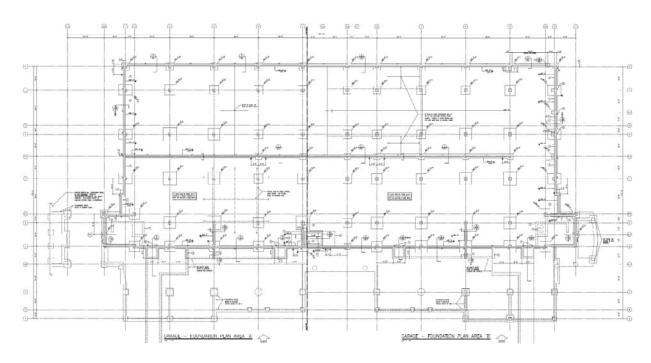
Building Background

Architectural

The School of Engineering and Applied Science (SEAS) at Miami University of Ohio has a new home in a newly constructed building comprised of laboratories, classrooms, and administrative and faculty office spaces. The new structure is attached to a previously existing classroom building, Benton Hall, to the west by way of a sky walk at the first, second, and mechanical floors of the building. The designer attempted to assimilate the new building into the classic look of the old building, which controlled many aspects of the design such as the floor-to-floor and overall heights, façade material, and the use of the mansard roof. The architectural voice and concepts of Benton Hall are clearly evident in the design of the SEAS building.

The four-story building houses the public space in the first three levels, while the fourth floor is devoted strictly to mechanical equipment and is enclosed by a mansard roof that wraps around the building perimeter. Below grade, a three level parking garage provides covered parking for faculty and students. The SEAS building is symmetric about its center, and many figures in this report refer to Area A and Area B, which are the east and west halves of the building, respectively.

As part of the university's overarching plan to improve the campus, the previously existing ice rink to the north of the building was torn down to build a larger arena at another location on campus. In its place will be a new engineering quad for students to use as a recreational space. The rear of the building will embrace the new quad by having a large plaza extending from the rear of the building at the ground floor level that has stairs that lead down to the ground, which is lower in elevation than in the front of the building.

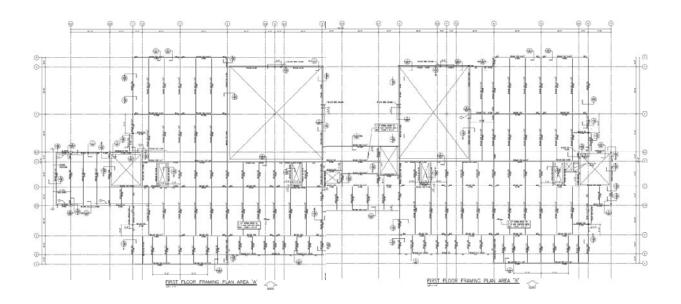

Site Layout

Perspective of SEAS Building Looking North-East

Existing Structural System

Foundation

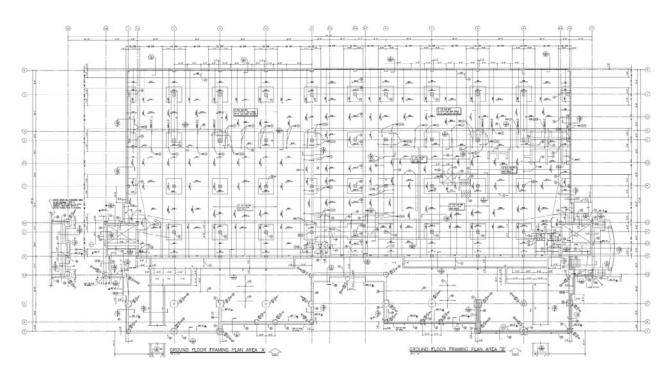
The lower level of the parking garage is a 5" slab on grade with a minimum 28-day compressive strength of 4500 psi, over 6" of granular subbase. It is reinforced with WWF 6x6 – W4.0xW4.0 wire mesh. The concrete columns, which carry the load from the main building above are supported by spread footings which range in size from 4'-0"x4'-0"x24" reinforced with (7)#5 bars each way to 9'-0"x9'-0"x42" reinforced with (15)#8 bars each way. The garage walls around the exterior are supported by 2'-0"x2'0" footings reinforced with (3)#9 top and bottom steel, while the wall footing running through the center of the garage is only 1'6" deep and reinforced with (2)#7 bottom bars. The School of Engineering and Applied Science Building's entrance plaza is a slab on grade with a minimum 28 day compressive strength of 4000 psi which varies by location from 5" thick reinforced with WWF 6x6 W4.0xW4.0 to 9" thick reinforced with #5 bottom bars at 12" O.C. and top WWF 6x6 W4.0xW4.0. The plaza is supported by drilled piers that range in size from 36" diameter, 12'-8" deep, to 60" diameter, 17'-4" deep. Grade beams run between the drilled piers and are typically 2'-0"x2'0". All footings, piers, and grade beams have a minimum concrete strength of 5000 psi.



Foundation Plan

Floor System

Upper Floors


The first, second and mechanical floor of the School of Engineering and Applied Science Building utilizes a composite floor system with a typical concrete slab of 3½" on 3" 18 gage composite metal deck with normal weight concrete of minimum 28-day strength of 4000 psi, and is reinforced with WWF 6x6 W2.9xW2.9. The most typical bay is 30'-0"x30'-0" where the deck spans over (3) 10' spans on W16x26 beams with (26) 3/4" diameter, 5" headed shear studs, and are cambered 11/2". The beams frame into W21x83 girders at third-points, which have (40) shear study of equal dimensions, and are not typically cambered. Girders in areas with larger tributary areas, in the north side of the building are W24x84's. These girders are also part of the lateral resisting system in the East-West direction and are supported with partially restrained moment connections at the columns. The roof is a mansard roof around the perimeter, sloping at a 12-12 pitch until it flattens off through the central part of the building. The roof does not have a composite slab, and is built of 4" rigid insulation on 11/2" 20 gage wide rib roof deck, which spans on wide flange beams which are typically W8x10 on the pitched part of the roof, and are W10x12 or W12x16 in the central, flat area. The beams frame into girders which are generally W18x55.

First Floor Framing Plan

Garage and Ground Floor

The middle and the upper levels of the garage, as well as the ground floor of the main building are comprised of a 2-way reinforced concrete slab with a minimum 28-day compressive strength of 5000 psi. The bay layout generally follows that of the columns above, typically 30'-0"x30'-0", from the main building to avoid the need for transfer slabs and girders. The middle and upper levels of the garage use a 9" flat slab with 10'-0"x10'-0"x8" drop panels at the columns. At the east end of the upper level, the slab turns into a 10" flat slab, and continues to turn into a 12" flat slab at ground floor, particularly on the northern half of the building. This is due to the fact that the live load on the ground floor is higher than anywhere else throughout the main building or garage. There are (3) transfer beams in this northern section of the main floor spanning north to south where the garage column layout doesn't exactly match that of the upper floors, which are 50" deep and are 36" or 48" wide. At the easternmost end of the building, there is a small section of slab where it is thickened to 14" to carry the some masonry walls.

Ground Floor Framing Plan

o Columns

Upper Floors

Columns supporting the first floor through the roof are rolled W12 shapes with a yield strength of 50 ksi. Most of the columns contribute to the moment frame in the East-West direction, which range in size from W12x40 to W12x136. Where the columns continue all the way to the main roof through the mechanical floor, they are spliced just above the mechanical floor level. The base plates of gravity columns typically $1\frac{1}{4}$ " – $1\frac{1}{2}$ " thick on 2" of non-shrink grout, with (4) anchor bolts embedded 16" into the ground floor concrete, and are assumed to act as pin connections. Columns acting as part of the moment frames or the vertical braces have heavier 2" – $2\frac{1}{4}$ " thick, much larger in area so that the anchor bolts can be placed outside of the columns' projected area, unlike the gravity columns, and are assumed to act as fixed connections.

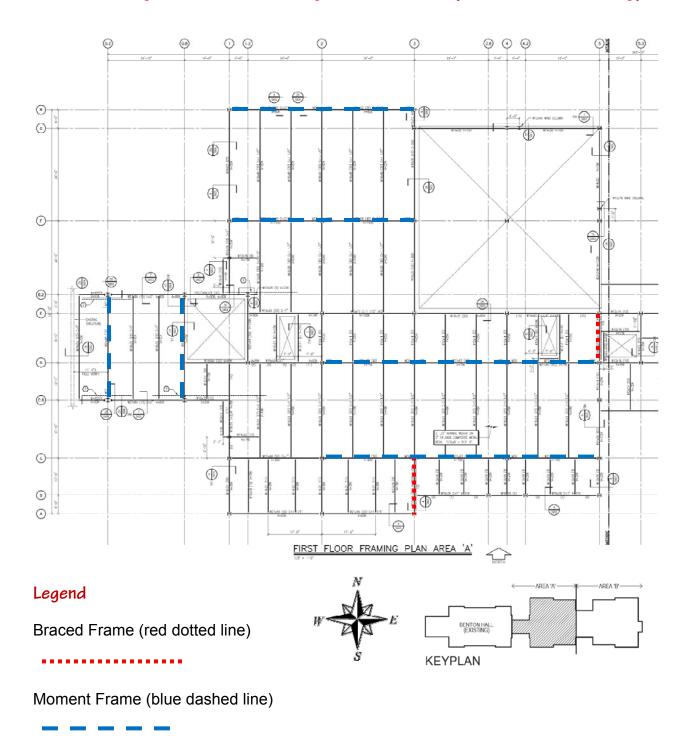
Garage

The concrete columns in the garage are typically 24"x24", and have specified concrete strengths of either 4500 psi or 5000 psi depending on the location, and hence load, on the column. Reinforcement in the columns varies from (4)#11 bars to (12)#11 bars and splice at the middle level of the garage. The number of dowels at the base of the columns follows the number of reinforcement bars in the column, and are embedded to the bottom of the spread footing and hooked, creating a fixed connection.

Lateral Resistance System

North-South Direction

The lateral system in the transverse (short) direction of the building consists of four (4) single bay concentrically braced steel frames from the ground floor to the mechanical floor, of roughly the same size. Please see the following page for a typical plan of the lateral resisting system. There is only one cross brace at each of the three levels of the brace, sloping up from south-to-north, and are made of steel tubing, ranging in size from HSS8x8x1/4 to HSS10x10x1/2. Since the braces are only in one direction, each member is designed for both tension and compression forces induced in it. Elevations of each braced frame and can be found in Appendix A of this report. Additionally, there are two (2) single-span moment frames that support for the skywalk that connects the west end of the School of Engineering and Applied Science Building to Benton Hall. At the eastern end of the building, there is also a moment frame with wide flange columns and HSS20x12x5/8 steel tube beams beside the stairwell. The moment frames at the ends of the building provide for added torsional rigidity. For lateral resistance from the mechanical floor to the roof, the mansard roof around the perimeter braces the roof, but is helped by four (4) single-span moment frames, which frame into the columns' weak bending axes. This plan can be found in Appendix A.


East-West Direction

The longitudinal (long) direction of the building utilizes an ordinary moment frame system, comprised of a total of eight (8) frames. There are four (4) full height moment frames that run from the ground floor all the way to the roof in the southern half of the building. The remaining four (4) frames in the northern half of the building are only two (2) stories tall, and stop at the low roof where the building steps back at the second floor level. Refer to the framing plans in Appendix A for the locations of each frame. The moment frames use a partially restrained moment connection that has plates bolted to the flanges, which then are welded with full-penetration welds into the columns supporting the beams.

Garage

There are three levels of below grade parking, mostly of which is directly beneath the main building. However, the northern end of the garage is below the exterior terrace in the rear of the building, where the grading drops down to approximately one level below the ground floor. This causes the weight of the ground floor to induce seismic forces, which are then transferred to the foundation through the exterior walls of the garage, which all act as shear walls. The walls range in thickness from 8" to 14" depending on their location.

Existing First Floor Framing Plan - Area 'A' (West half of building)

Note: The lateral resisting system is symmetric about the center of the building, so the frames are mirrored onto Area B of the building.

Structural Depth

Design Goals and Procedures

The overarching purpose of this thesis project is to investigate whether an alternate structural system could be a viable option for the design of the School of Engineering and Applied Science building. Based on previous research performed in Technical Report 2, it was determined that the composite concrete slab on steel framing system used on the building was a good choice for the superstructure, as opposed to all cast in place concrete systems investigated, as well as a non-composite steel system. The only alternative structure that held potential as a realistic alternative was to replace the cast in place concrete slab with precast hollowcore floor planks supported by a similar steel structure. This report investigates the implications that such a change would entail on the design of the structure itself as well as the construction cost and schedule timeline.

By utilizing a structural system that is completely prefabricated, erection time of the building can be significantly reduced, allowing for a faster building completion and therefore a sooner turnover to the building occupants. Since the building will be owned and occupied by Miami University, there would be no direct income gained by an earlier move-in date as there would be in commercial buildings where owners want to be able to lease the interior space as soon as possible. However, if the university deemed there to be a direct need to use the space for its intended purpose at a sooner date, it would be possible to significantly reduce the schedule by using a prefabricated system. This report will focus on the above grade structure as a separate entity from the below grade cast in place concrete parking structure. If the university were on such a tight schedule, it may also be possible to use a precast garage structure consisting of precast concrete double-tees for the parking deck, and even precast walls and beams to support them.

Design of structural elements was based on equations put forth by the applicable building design codes. Loads were determined from ASCE 7 and distributed to gravity elements by hand on the basis of tributary area. Lateral loads were distributed to building frames based on relative stiffness and building torsion, and was aided by the use of an ETABS computer model and verified by hand calculations.

• Design Codes

The School of Engineering and Applied Science Building was designed using the 2002 Ohio Building Code (OBC) with reference to ASCE 7-98 for building load determination procedures. ACI 318-99 was used to design the concrete portions of the structure, and concrete masonry construction was designed using ACI 530.1, Specifications for Masonry Structures, and construction specification section 04810. The 1992 edition of AISC's Code of Standard Practice for Steel Buildings and Bridges, as modified by the construction documents, was used for design of steel members, and ANSI/AWS Structural Welding Code – Steel D1.1 was used for design of welds.

This report will use the more recent IBC 2006 with reference to ASCE 7-05 for building loads. ACI 318-05, Building Code Requirements for Structural Concrete, and the Load Resistance Factored Design procedure from the 13th edition of AISC's Manual of Steel Construction will be used for design of the concrete and steel structural members, respectively. In addition, the 6th edition of the PCI Design Handbook for Precast and Prestressed Concrete was used aide in designing precast concrete members.

Load Combinations

Calculations for all structural members referenced throughout this section can be found in Appendix C. The following load combinations from Chapter 2 of ASCE 7-05 were used in evaluating ultimate factored loads used to check member capacities and for building overturning:

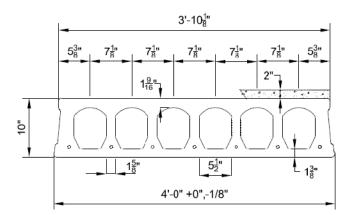
- 1. 1.4(D + F)
- 2. 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or S or R)
- 3. 1.2D + 1.6(Lr or S or R) + (L or (0.8W))
- 4. 1.2D + 1.6W + L + 0.5(Lr or S or R)
- 5. 1.2D + 1.0E + L + 0.2S
- 6. 0.9D + 1.6W + 1.6H
- 7. 0.9D + 1.0E + 1.6H

• Gravity Load Resisting System

o Design Loads

Dead Loads

Item	Weight
10" Hollowcore Plank	68 psf
2" Concrete Topping (Normal Weight)	25 psf
Metal Deck	2 psf
Steel Framing	8 psf
Ceiling and Mechanical Allowance	
Typical Floor	15 psf
Mechanical Floor	25 psf
Roof	10 psf
Garage	10 psf
Partition Allowance	10 psf
Roof Materials	
4" Rigid Insulation	6 psf
Roof Membrane	1 psf
1/2" Gypsum Board	2 psf

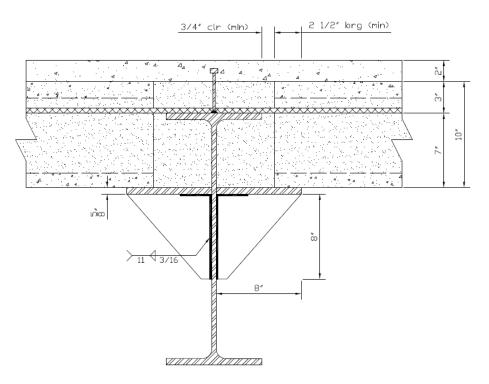

Live Loads

It is worthy to note that ASCE 7-05 does not specify live loads for labs such as the ones within the School of Engineering and Applied Sciences Building, which is what a large percentage of the space within the building is designated for. The designer chose to use a uniform load of 100 psf for upper level labs and 125 psf for labs at ground floor, which is what this report will use in the analysis.

Area	Design Live Load	
Typical Floor	100 psf	
Labs at Ground Level	125 psf	
Mechnical Equipment Rooms	150 psf	
Plaza	100 psf	
Roof	25 psf	
Parking Decks	50 psf	
PSE Basement at Upper Garage Level	125 psf	
Utility Tunnel	250 psf + 360 psf overburden	

Hollowcore Floor Planks

The use of hollowcore planks as the main floor element will have many inherent advantages, the largest of which is the faster erection time. High span-to-depth ratios are easily achieved with the use of prestressed concrete and in general, hollowcore planks perform admirably in both vibrations and acoustics. The typical 30' spans require a 10" thick plank to retain a 2 hour fire rated floor while carrying such a heavy live load. A cast in place normal weight concrete topping with an $f_{\rm c}$ of 3000 psi is placed over the plank which acts as a "leveling coat." It is 2" thick at the end of the plank, and is thinned at midspan of the plank to account for the natural upward camber of plank. A spreadsheet calculating the transfer and service stresses as well as ultimate bending moments along the length of the plank and compared to the allowable limits can be found in Appendix C. Since actual hollowcore floor plank systems vary by producer, cross-sectional properties of design of the plank an actual plank were found from Nitterhouse Concrete Products, Inc., were arbitrarily selected to be representative of a standard 10" plank.

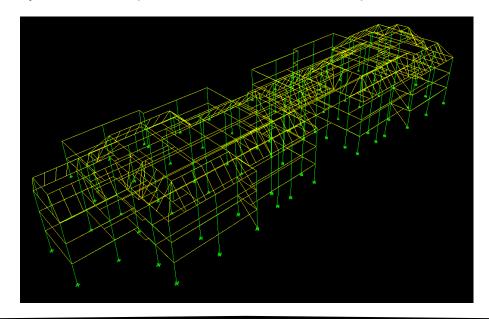


Cross Section of a 10" hollowcore floor plank with 2" topping Courtesy: Nitterhouse Concrete Products, Inc.

Supporting Steel Plate

When hollowcore floor is supported by steel wide flange girders, the plank typically bears on the top flange. This creates a very large structural floor sandwich which in some cases can be very undesirable and eliminate the system as a possible option. The floor-to-floor heights for this project were made to line up with those of Benton Hall so the floor of the skywalk connecting the two buildings will align with each building. This may allow for some extra structural space, but without knowing this for sure, a system that allows for the same floor-to-ceiling space to accommodate large lab equipment was made to be kept the same. To do this, it would be impossible to allow the plank to be connected to the top flange of the beam. Some sort of a system where

the bottom of the plank is lowered below must be designed. In some buildings, designers will choose to use a girder-slab system where special beams with a narrow top flange are used so that the plank can rest directly on the bottom flange and be flush at the top. However, if this system were to be used on the SEAS building, spans would have to be dramatically reduced from the current 30'. Also, a new lateral resisting system in the longitudinal direction of the building would have to be put in place of the moment frames, which serve the dual purpose of resisting the lateral loads and carrying the hollowcore plank. A system where steel angles are welded to the web of the supporting beam was investigated, but bending due to eccentric load from the plank made the angle prohibitively thick. Therefore a steel plate supported by triangular bracket plates at 24" O.C. The width of the steel plate needs to be large enough so that the plank will have a minimum of 2½" of bearing width, while leaving ¾" clear distance from the end of the plank to the edge of the top flange so that grout can flow through the crack to get behind the plank. This resulted in a typical plate dimension of 5/8"x8" continuous along each side of the girder web, supported by 8"x8"x1/4" triangular bracket plates welded to the beam web by a 3/16" continuous fillet weld. Additionally, since the diaphragm is interrupted by the girder, the top of the plank must be held up about 3" from the top of the beam to allow #4 rebar spaced at 4' O.C. can be embedded about 18" deep into the tops of the cores of the plank before they are grouted. This ensures that diaphragm shear stresses can adequately be transferred across the floor and will not cause the concrete topping to crack.


Cross Section of Supporting Girder Showing Steel Plate Supports

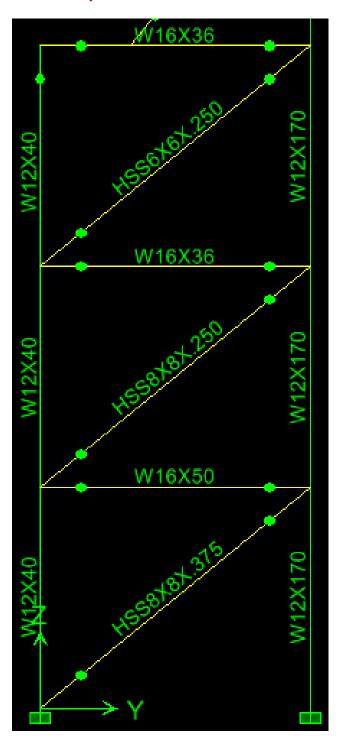
Steel Framing

Gravity loads controlled the design of nearly all of the steel framing elements. The steel girders that support the hollowcore floor plank generally all span in the E-W (longitudinal) direction, and typically span 30' or less. Design was done by hand on all steel beams by tabulating the tributary area and spans of each beam and finding the maximum ultimate moment and selecting a wide flange shape to resist the design forces. Deflection was then calculated on each beam and the beam was redesigned as necessary, though strength controlled the majority of beam sections. The ETABS computer model maximum moments of each beam were checked against the hand calculations and were found to be comparable, but consistently smaller due to the fact that the computer model finds the actual span rather than the span used in hand calculations which use center-to-center column dimensions as the span length.

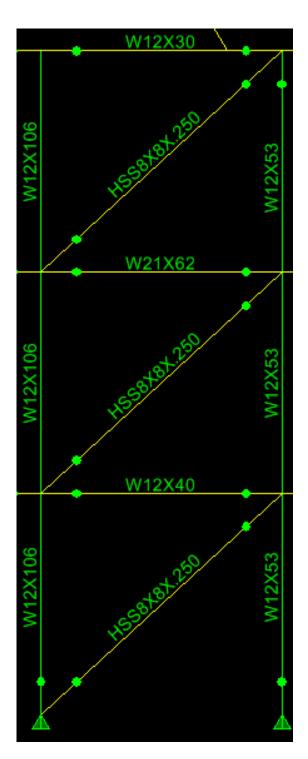
Steel shear studs were used across the top of each beam in a similar fashion as the original composite system, but for a different reason. If the compression flange of a beam can be braced against buckling throughout the beam, the full available moment of the cross section can be used. By spacing the shear studs along the top flange of the beam at a distance less the maximum unbraced length for full moment capacity, a much smaller beam section can be used than if the beam were not braced against buckling for the full span.

Steel columns were resized for the heavier load of the new structural system and increased seismic loads by finding the factored loads given by the ETABS computer model. Typical gravity columns used an effective length factor, K, of 1.0, while columns in the moment frames used a conservative K value of 2.0. Spot checks to validate the loads given by ETABS were performed and found to be comparable.

Lateral Load Resisting System

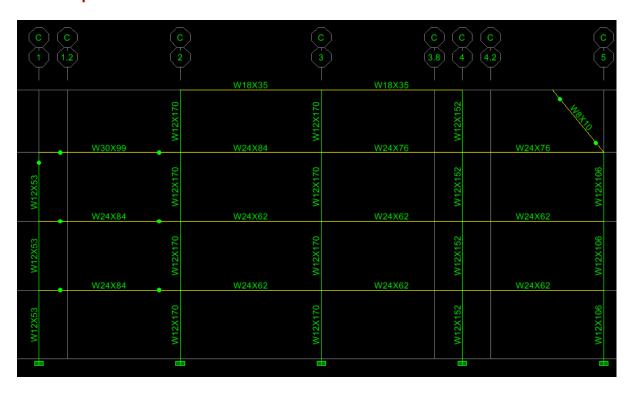

After careful review of the building's existing lateral resisting system, it was deemed to be a very effective system for both the existing composite slab floor and the proposed hollowcore floor system. The girders of the moment frames in the East-West direction are also supporting the floor planks, which makes the system a logical choice. Since the gravity system does not require continuous steel frames in the North-South direction, the use of braced frames is the most rational lateral load resisting system. Therefore, the layout of the frames in both directions was unchanged from the original design. See the previous section on building background for more information about the layout of the steel frames.

In previous technical reports about this project, the structure was analyzed by finding the base shear at actual grade level. This caused ground floor weight to induce seismic loads, and affect the distribution of loads to each floor diaphragm. After reevaluating this logic, it was determined to be more sensible to consider the steel superstructure as its own entity, so that seismic forces within it are distributed properly. If the lateral resisting system of the garage shear walls were also to be designed, the structure would be evaluated on its own, simply with an additional seismic shear added at the ground floor level. This method allows direct comparison of the changes made in the steel structure while leaving ground floor and below grade framing remain unscathed.

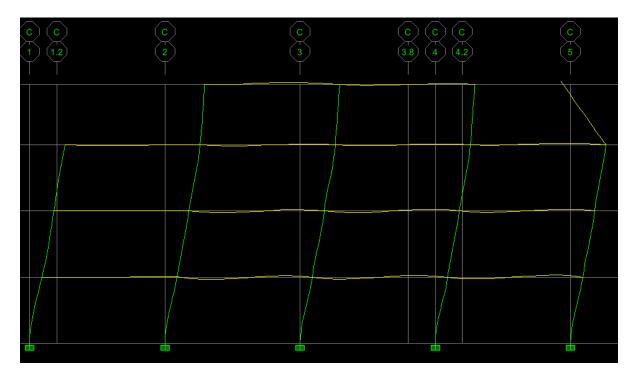

Seismic loads were larger than wind forces at each floor in both directions. However, factored ultimate loads in the moment frames were controlled by load combination (2), 1.2D + 1.6L, as opposed to those based on lateral loads. Braced frame members were checked for seismic and wind forces in both the north-to-south (braces in compression), and south-to-north (braces in tension) directions.

Please see the following pages for elevations of redesigned braced frames and a typical moment frame.

O Proposed Braced Frames



Elevation at Lines 3 & 8 (Looking West)



Elevation at Lines 5 & 6 (Looking West)

o Proposed Moment Frame

Elevation at Column Line C (Looking North)

Elevation at Column Line C under Seismic Load (Looking North)

Wind Loads

Wind loads determined for the School of Engineering and Applied Science building were carried out under Section 6 of ASCE 7-05. Factors were based on building characteristics, location, and height of the building. Assumptions include the normalization of the building's shape into a rectangle, ignoring any indentations or extrusions in the façade, and that the walls around the mechanical floor are actually plumb rather than sloped as a mansard roof were made to simplify the analysis, which results in a conservative wind force at that level. It is worthy to note that a large expansion joint exists where the new building attaches to the existing Benton Hall which is fairly open. As such, wind loading in the East-West direction has two effective modes, one where the windward pressure is acting in combination with the internal pressure, and one where the leeward pressure acts with the internal pressure, but not a combination of the windward and leeward pressure on the whole building. The building is in occupancy category III since it is a college facility with a capacity of over 500 people, which results in a wind importance factor of 1.15. A summary of the analytical procedure is presented with this section. Refer to Appendix B for loading diagrams and a more detailed analysis.

Wind Design Summary					
Design Parameter	<u>Symbol</u>	<u>Value</u>	ASCE 7-05 Reference		
Occupancy category		III	Table 1.1		
Wind design method		Method 2			
Wind importance factor	1	1.15	Table 6-1		
Exposure category		В	Section 6.5.6.3		
Enclosure classification		Enclosed			
Wind directionallity factor	k _d	0.85	Section 6.5.4.4 & Table 6-4		
Topographical factor	k _z	1.00	Table 6.5.7.2		
Basic wind speed	V	90 mph	Figure 6-1		
Approximate building period	T _a	0.438 s	Equation 12.8-7		
Gust effect factor	G	0.85	Section 6.5.8		
North-South length		356.25 ft			
East-West length lower 2 levels		134.0 ft			
East-West length top 2 levels		86.0 ft			
Height above grade	h _n	61.33 ft			
Ground level base shear N-S Wind	V	348 k			
Overturning moment N-S Wind	М	13,516 ft-k			
Ground level base shear E-W Wind	V	71 k			
Overturning moment E-W Wind	М	1175 ft-k			

o Seismic Loads

Seismic loads determined for the School of Engineering and Applied Science Building were carried out under Section 11 of ASCE 7-05 using the equivalent lateral force design method. The building is in occupancy category III since it is a college facility with a capacity of over 500 people, which results in a seismic importance factor of 1.25. Design assumptions and a summary of the analytical procedure are presented within this section. Refer to Appendix C for loading diagrams and a more detailed analysis. Note that a response modification factor, R, of 3.0 was selected in both directions, as a structure not specifically detailed for seismic resistance.

Seismic Design Summary					
<u>Design Parameter</u>	<u>Symbol</u>	<u>Value</u>	ASCE 7-05 Reference		
Occupancy category		III	Table 1.1		
Site classification		С	Table 20.3-1		
Seismic Design Category	SDC	В	Tables 11.6-1 & 2		
Seismic importance factor	ı	1.25	Table 11.5.1		
Short period spectral response	S_s	0.171g	Section 11.4.1		
Acceleration-based Site coefficient	F _a	1.2	Table 11.4-1		
Maximum short period spectral response	S _{DS}	0.137	Equation 11.4-3		
Spectral Response at 1 sec	S ₁	0.073g	Section 11.4.1		
Velocity-based site coefficient	F_v	1.7	Table 11.4-2		
Maximum spectral response at 1 sec	S _{D1}	0.083g	Equation 11.4-4		
Response modification factor	R	3.0	Table 12.2-1		
Deflection amplification factor	C _d	3.0	Table 12.2-1		
N-S building period	T	1.161 s	Calculated on ETABS		
N-S Maximum building period	T_{max}	0.708 s	Section 12.8.2		
E-W building period	T	1.855 s	Calculated on ETABS		
E-W Maximum building period	T_{max}	1.214 s	Section 12.8.2		
Long-period transition period	T _L	12 s	Figure 22-15		
N-S Seismic design coefficient	C _S	0.0487	Section 12.8.1.1		
E-W Seismic design coefficient	C _s	0.0284	Section 12.8.1.1		
Height above ground level	h _n	57.33 ft			
Ground level base shear N-S loading	V	484.8 k			
Overturning moment N-S loading	М	19,728 ft-k			
Ground level base shear E-W loading	V	282.8 k			
Overturning moment E-W loading	М	12,068 ft-k			

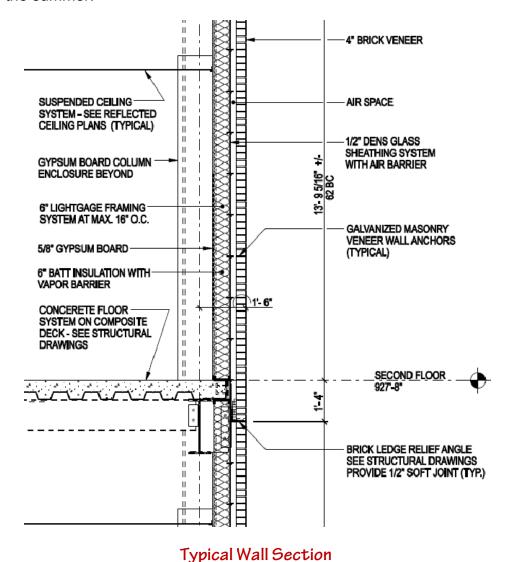
Serviceability Considerations

Drift limits for both seismic and wind loadings were compared with drift values computed by the ETABS computer model under service loads.

Seismic drift at each story was evaluated against $\Delta_{\text{seismic}} = 0.015h_{\text{sx}}$ in accordance with IBC Table 1617.3. The amplified story drift at each level is given by the equation $\delta_x = (C_d \cdot \delta_{xe})/I$, per ASCE 7-05 Eq. (12.8-15). The code allows for the use of amplified drifts based on seismic loads using the calculated actual period if it is higher than T_{max} , as is the case in this project. However, since story drift was considerably less than code limitations, it is not necessary to use the lower building response loads.

Wind story drift for each level was evaluated against the commonly accepted engineering value of Δ_{wind} = H/400. The following table shows the calculated drift values the point of maximum drift of the building for each direction under both N-S and E-W wind loads.

	Seismic Story Drift						
Story	Height (ft)	Deflection Amplification Factor, C _d	ETABS Displ. in E-W direction (in)	Amplified Story Drift in E-W direction (in)	in N-S	Amplified Story Drift in N S direction (in)	***
Roof	57.33	3.0	1.212	0.017	1.007	0.031	2.40
Mech.	44.00	3.0	1.205	0.835	0.994	0.737	2.64
2nd	29.33	3.0	0.857	0.998	0.687	0.929	2.64
1st	14.67	3.0	0.441	1.058	0.300	0.720	2.64


	Wind Story Drift						
Story	Height (ft)	ETABS Displ. in E-W direction (in)	•	ETABS Displ. in N-S direction (in)	Story Drift in N-S direction (in)	Allowable Drift = H/400 (in)	
Roof	57.33	0.235	0.000	0.717	0.013	0.40	
Mech.	44.00	0.235	0.052	0.704	0.217	0.44	
2nd	29.33	0.183	0.078	0.487	0.263	0.44	
1st	14.67	0.105	0.105	0.224	0.224	0.44	

Building Enclosures Breadth

Existing Conditions

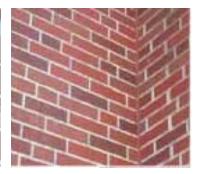
Having a brick façade was an absolute necessity on this project due to the need to assimilate the building into the architecture of Benton Hall and other adjacent buildings. The designers of the building used a very conventional system of enclosing the building by using a non load bearing steel stud wall with a face brick veneer. Local prices for this type of construction are low and the system provides for crisp aesthetics, freedom in architectural façade design, and good thermal properties with the use of fiberglass insulation.

A typical wall has an overall R-value of 11.35 ft².°F·hr/Btu in the winter, and 11.20 in the summer.

• Proposed Redesign

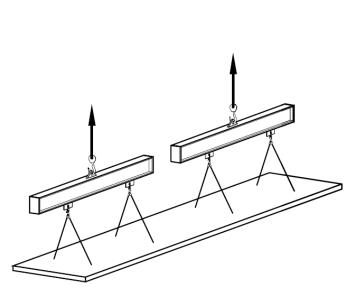
Using a prefabricated panel system as wall cladding provides for distinct construction schedule advantages. The amount of labor hours saved by erecting a wall panel system over setting up scaffolding and laying brick façades is very large. If a sooner building completion date was needed, precast walls would provide advantages similar to that of using the precast floors proposed in the structural depth. Therefore this breadth will investigate the use of insulated precast sandwich wall panels as an alternative to the existing face brick with steel stud back up building enclosure.

In general, sandwich wall panels are comprised of two layers, or wythes, of concrete with a layer of rigid insulation "sandwiched" between them. Depending on the size and use of the panel, the concrete can be prestressed or simply have mild reinforcing. The two concrete wythes can be designed to act together as a composite panel where steel ties through the insulation must be designed to fully transfer all shear forces, or as non-composite panels where the interior wythe is designed to carry all imposed loads, and therefore will result in a thicker panel. Total panel thickness for all types of panels can be a thin as 6" for small cladding panels, to upwards of 16" thick for larger non-composite load-bearing walls. The insulation layer is typically 2" – 4", and must be made of a rigid or cellular material to match physical properties of the concrete. Expanded or extruded polystyrene are the most common materials used, but cellular polyisocyanurate can be used to provide a slight increase in thermal resistance.


For the School of Engineering and Applied Science building, vertical non load-bearing prestressed composite wall panels will bear on a grade beam along the top of the garage walls. For walls along the front of the building, they will need to be three stories high, from the ground floor to the top of the mechanical floor. The most typical panel was designed to be 45'-4'' tall x 12'-0'' wide x 9'' thick, with a window centered in the panel at each floor level. Four inch thick expanded polystyrene was used for the insulation, while each concrete wythe was $2\frac{1}{2}''$ thick, each with (4) 3/8'' diameter prestressing strands. Structural calculations can be found in Appendix D.

The exterior wythe will have ½" "thin brick" embedded into its surface, effectively making the exterior concrete wythe only 2" thick for structural calculations. The use of thin brick in precast wall panels allows buildings to use the classic look of a brick façade while utilizing the inherent construction advantages of a prefabricated wall, although some architects will refuse to have the joints of the panels interrupt the solid look of a traditional brick façade. However, in some instances the jointing pattern created can enhance vertical architectural features, such as the stone "columns" on the exterior of the SEAS building. Special attention must be used when erecting the panels so that the tooled brick "mortar joints" are carefully aligned or the look is completely ruined.

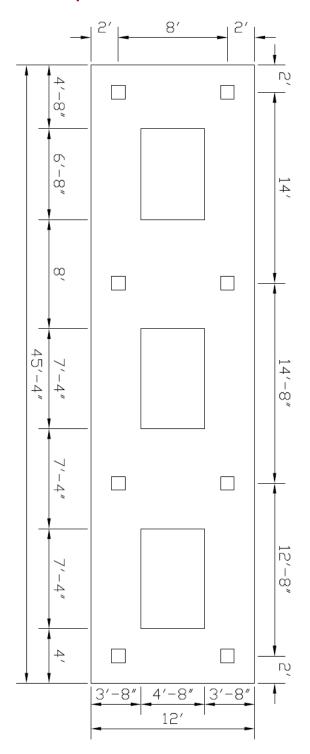
The use of 4" insulation is not typical, but to maintain a similar R-value as the existing walls, it was necessary. The overall wall system R-value was calculated to be 10.61 ft²-°F·hr/Btu in the winter and 10.44 in the summer, for about a 6.6% decrease in thermal resistance, which would increase annual heating and cooling costs. If better insulated (and more expensive) windows were used, it may be possible to have the building enclosure to be more energy efficient than the original design. Thermal resistance calculations can be found in Appendix D.



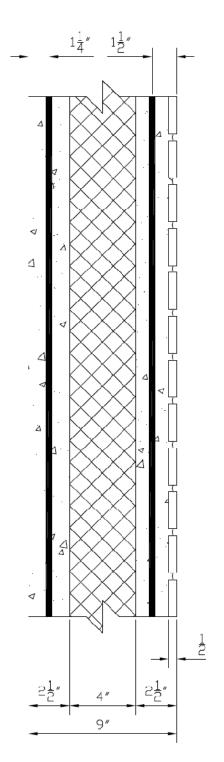
Thin Brick Being Laid in Form

Templates Ready for Stripping

Panel Corner Joint


(b) Eight Points With Two Cranes and Two Spreader Beams

Eight-Point Pick Configuration (for Stripping)



Panel Being Erected

o Typical 12' Wide Sandwich Panel

Typical Panel Elevation with Window Openings and Pick Points Shown

Wall Panel Cross Section with 3/8" Diam. Strands and Thin Brick Shown


Slotted Insert Connectors

Allowing the structure and panels to move independently of each other in-plane is crucial to the structural integrity of the panel. Vertical and lateral deflections of the structure could induce restraining forces into the panel for which it is not designed to withhold. Such forces could cause cracking near the panel connection points. Therefore connections must be designed to restrain the panel from out-of-plane bending while allowing freedom to move both horizontally and vertically in the plane of the panel.

Slotted insert connectors are commonly used to connect non-loadbearing panels, and can allow 2-way or 4-way freedom to move, depending on the desired restraint. The slotted insert is embedded horizontally into the concrete of the panel when it is cast, and the threaded bolt restrains the panel from out of plane movement at each floor level through a vertical slot in small angle attached to the perimeter beam or column.

PSA Slotted Insert by JVI

4-Way Adjustment Connection at Column

Construction Management Breadth

Cost Analysis and Comparison

Often times, building systems in many areas of the design are chosen based strictly on cost. Given no additional system performance requirements beyond code limitations, or an unlimited schedule, the cheapest system possible is considered to be the best option for virtually any type of project. However, when design constraints are added to a building, such as a maximum building height or a specific turnover date is required, alternate systems that cost more money may be the only solution to a problem. This section of the report will analyze the cost implications of designing the structural system and building enclosures as proposed.

Since only overall and subcontractor costs were given to the author, actual material and labor costs of the existing building structure and enclosure were not available. Therefore, a unit cost analysis was done for both the existing structure and the proposed redesign using data from RS Means Construction Costs 2008. Since the building was actually constructed in 2006 - 2007, all prices are slightly higher than those that the project would have seen when built. Takeoffs were calculated for two typical bays at each level above grade, averaged out for the square footage of the areas covered, and then multiplied by the total floor area of each level to find the cost of the entire building structure. Similar approximations were made for calculation of the existing wall system. It is worth noting that the self-jacking scaffolding system that the brick layers used is not in RS Means, and therefore scaffolding costs were based on standard steel tubular scaffolding. When evaluating the cost of the precast sandwich wall panels, information in RS Means is extremely limited, so a precast producer was contacted to give a price based on what they would charge to manufacture and deliver the product. Labor cost of panel erection was found by finding the total cost it would take an erection crew to complete the building, and averaged out on a square foot of wall area basis. Since the precast producer's price includes their overhead and profit, 30% was taken off of their price to compare direct system costs. Takeoffs and unit cost estimation calculations of all systems can be found in Appendix E. The unit prices in the appendix and total costs listed in the table below are before overhead and profit and are multiplied by the city cost index numbers of Dayton, OH, the closest city to Miami, OH that is in the RS Means book.

	Total Cost	Cost/SF	% Increase
Existing Structure	\$1,515,163	\$17.16	
Proposed Structure	\$1,733,813	\$19.64	14.4%
Existing Bldg. Enlcosure	\$577,728	\$17.23	
Proposed Building Enclosure	\$789,745	\$23.55	36.7%

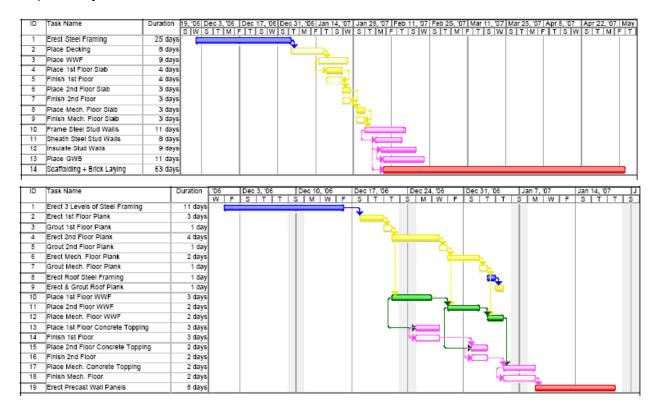
• Schedule Analysis and Comparison

This entire report is centered on the fact that a prefabricated structure and wall system would save erection time. Therefore it is critical to be able to quantify the actual construction time that could be saved by finding the how the proposed changes would affect the critical path of the schedule.

As in the cost analysis, original scheduling information was not available. Similar estimation methods as described in the cost analysis were used. Reasonable assumptions were made as to the number of crews that could be used to complete a given task. Construction tasks were made to be completed in a logical order, and photographs documenting construction of the actual building were used to piece together information as to the sequence used. In any given instance, more or less crews may have been used, which could greatly affect the total schedule timeline.

When the building was actually constructed, the structure of Area A (west half of building) was almost complete before erection of steel framing of Area B was even started. In the proposed structural redesign, it would make more sense to complete an entire floor of framing or hollowcore plank at a time, rather than doing one half of the building, and then coming back later to do the other half. For comparison purposes, the schedule of the existing structure was made as if a similar erection sequence had occurred instead of the actual procedure used.

Using as fast of a construction schedule as reasonably possible, it was determined that the proposed structure could be erected and have all concrete toppings placed in about 5 weeks, using a total of 3522 labor-hours. This is in comparison to the 9 weeks it would require to have the existing structure in place, with a total of 3652 labor-hours.


Once the structure is in place, subcontractors and other trades may begin their work on the building interior. For certain trades, it may be necessary for them to lift materials into place with a crane through the exterior walls of the building, but most of the time materials can be passed through doors and windows of the façade. However, some trades cannot begin their work until the building is completely enclosed. Without detailing every task in the building interior, it is very difficult to trace the critical path of the schedule to know exactly when it would be ideal to have walls in place. Therefore this report has made the assumption that all large materials that need to be transported into the building through the walls can be put in place in a short time right after, or possibly during completion of the structure.

It would take the existing system approximately 3 weeks to have all exterior stud walls built and drywall in place, and an additional 2.5 months for brickwork to be

complete, which is certainly not on the critical path. This is in comparison to the 8 working days that it would take to erect and seal the proposed precast sandwich wall panels. That time is based on being able to set 12 of the 92 total wall panel pieces each day. This converts to 8586 labor-hours in the existing system, and only 576 labor hours with the prefabricated system. When a plain concrete exterior finish is being used, erectors can set up to 20 panels each day, but the extra time required to carefully align the thin brick cuts down on erection speed dramatically. In total, the schedule critical path is reduced by about 1.5 weeks by using precast wall panels.

In summary, using the proposed prefabricated structure and exterior walls would save a little over one month off of the construction schedule. However, from looking at construction pictures from the actual project, it seems as if even considerably more time would be saved than the methods in this report predict. This may be due to labor work force restrictions not made known to the author or liberal assumptions made. Both schedules were built to go as fast as possible for the given system, so that if time were a major concern, the schedule for the existing building probably would have been accelerated to a rate closer to what the estimated schedule use.

For unit daily output of each task, number of crews used, and schedule timelines generated by Microsoft Project, please refer to Appendix E of this report. The schedules below show estimated schedules of the existing and proposed buildings, respectively.

Further Considerations

To fully evaluate the feasibility of such proposed changes to the building, one must consider a number of issues outside of the scope of this investigation. Design restraints and intangible limitations exist on every project and can vary greatly in each building or location, which may force a particular system to be used over another. Many times, common local construction techniques will govern structural system selection as well. Without knowing all the project logistics, one can only try to account for the general design issues that would be common to a project under any predefined circumstances.

The largest and most glaring issue not covered in this report is the impact that such changes to the building superstructure would have on the below grade structural elements, namely the supporting concrete columns, walls, and foundations. However, the only changes that would need to be made would be fairly minor on the grand scheme of things. Every load-bearing element would have an increased dead load on it of approximately 27%, for a total service load increase of about 13%. The 24x24 columns in the garage will require a small increase in steel reinforcing, or in a couple extreme cases may need to be enlarged. Footing dimensions will almost certainly change, but not to the point that it would require a change in system from the current spread footings. Reinforcement in the perimeter shear walls would need to be resized for the additional (about 20% increase) seismic shear to be transferred from the abovegrade structure. The full cost of these increases would also need to be calculated to fully evaluate the additional cost of the increased dead loads.

Since the minimum floor-to-ceiling clear heights required for the lab spaces is unknown, the floor sandwich was designed to be the same as the existing structure, which required the hollowcore planks to be supported by steel plates attached to the web of the supporting steel girder. If the structural floor sandwich were allowed to be increased by 7", hollowcore planks could be allowed to bear on the top flange of the girder, and eliminate the need for the supporting plates and brackets. Also, the shear studs along the top of the girder for bracing of the compression flange of the beam would be replaced by weld plates cast into the bottom of the hollowcore, which would then be welded with ½" x 3" fillet welds on each plank. This would save approximately \$1.83/SF, making the total cost of the proposed structure only \$57,100 more than the existing system, as opposed to the current \$219,600 increase.

Lead times for design and fabrication of precast concrete products, as well as specially fabricated steel shapes such as those proposed to support the hollowcore planks, can be up to a few months, and must be considered before a decision to use such products can be made. If the SEAS building were to be constructed as proposed

with the continued use of a cast-in-place concrete garage structure, long lead times will not be a problem since excavation of construction of all below-grade structure will take far more time than it will to manufacture the precast concrete and specially fabricated steel elements.

The use of hollowcore planks will make a difference in floor performance. In lab atmospheres, floor vibrations due to walking can cause problems with sensitive equipment. In general, hollowcore floors are very stiff for how thin they are, due to their inherent prestressing force. A full vibrations analysis would be helpful to determine the effect of the system change, but in the end should yield desirable results. Also, the cores of plank create good acoustical properties of the floor, so sound transmission through floors should be decreased, which may be very desirable in a lab setting.

Connections of steel beams were not studied in detail in this report, but would certainly need to be resized to account for the additional dead loads. The original design utilizes partially restrained moment connections in which a steel plate bolted to the top flange of the beam is narrowed between the bolts and the weld to the column to allow the plate to yield. This report has assumed connections to be fully restrained, which would cheaper to fabricate. Using partially restrained moment connections would allow the end and mid-span moments to be closer in magnitude than a fully restrained connection, and could make design of the beam slightly more economic.

Where the sandwich wall panels do not bear directly on grade beams or foundation walls, as is the case on the entire northern wall of the building, a transfer beam on the ground floor must be designed to support the increased weight of the walls between columns. Transfer beams can often cause clear height issues in garages, but due to the location of where the beam would need to be, it will not be a problem on this particular project.

As previously mentioned, using precast concrete elements in the garage could save even more schedule time than in the superstructure. As a rough estimate, the schedule could be accelerated by about 2 months with precast double tees, columns, beams, and shear walls. However, these savings would come at a significant cost in material and would have many issues to consider before it could be said to simply be a feasible option.

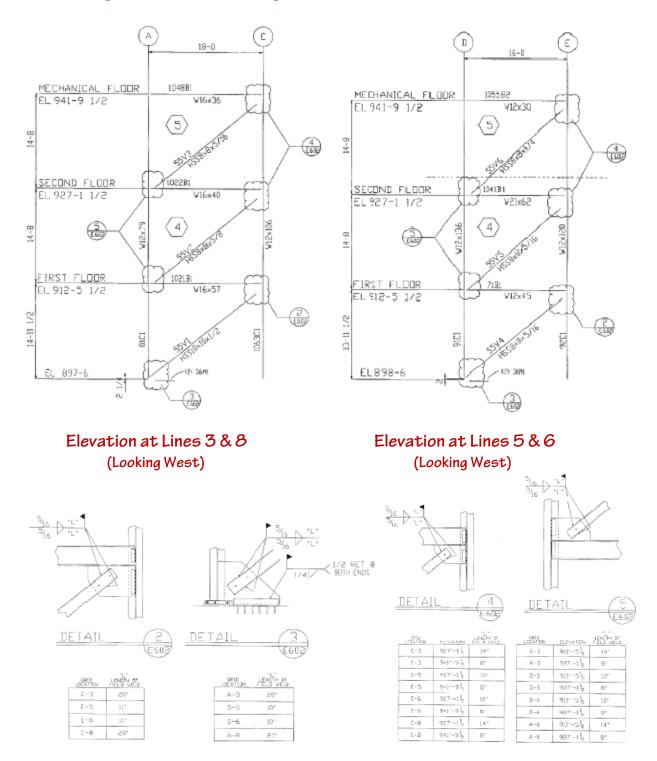
Conclusions and Recommendations

The purpose of this report was to analyze an alternative structural system's viability as a redesign of the building under investigation, the School of Engineering and Applied Science building. After initial research, it was determined that the existing building appeared to have used the best and most cost effective option available to them by using the composite steel framed structure with moment frames and braced frames. Local construction practices and costs make for this building method to be among the cheapest possible in many building applications. After further investigation throughout this thesis, it was confirmed that the structural system used was indeed the best for this specific project.

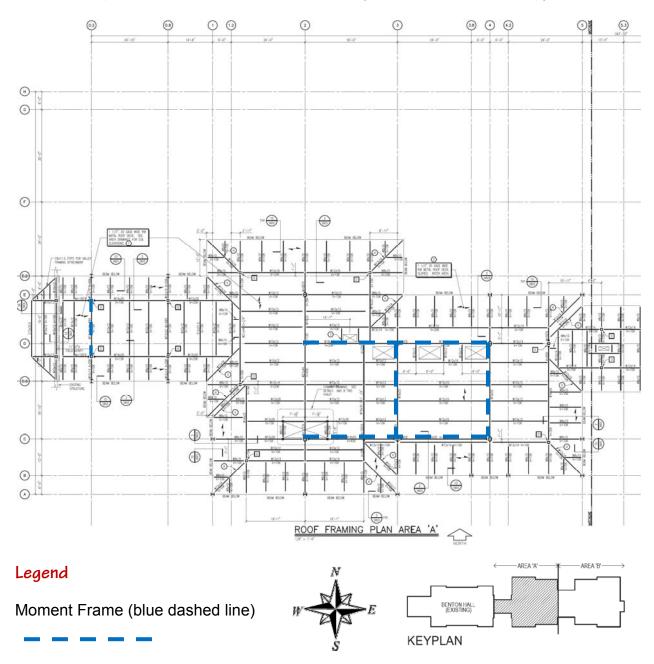
If circumstances about the project were different in such a way that a more demanding construction schedule were necessary for an earlier move in date, the slightly increased cost of using a completely prefabricated structure would be well worth the erection time savings. However, the university seemed to be in no hurry to have the building occupied, as was evident by many of the choices made in the design of the building. Cost was clearly the driving force in selection of many building systems and materials.

Similar to the conclusions on the structural system, the advantages of using a prefabricated wall system come at financial cost that is not necessary for this project. The existing steel stud walls with face brick veneer are much cheaper than what it would be to use the proposed precast concrete sandwich wall panels, and hence make them the best choice for the building.

While a great attention to detail and accuracy was put into this report, assumptions and project restraints made by the original designers may have differed dramatically than the ones used to investigate the redesign's feasibility. Additionally, the cost and schedule estimations are indeed that – estimations, and while they are expected to be reasonably accurate, they have a distinct margin of error, especially when not all existing circumstances of the project are known in full, as in this investigation. Many contractors will have their own construction cost data and could give very different estimates than the ones calculated by RS Means would result in. Certain contractors will simply prefer a certain system over another because of their familiarity with it, which is usually a regional issue. The existing structure seems to be a fairly common choice for buildings of similar use and size in the area and probably for good reason based on the results of this report.

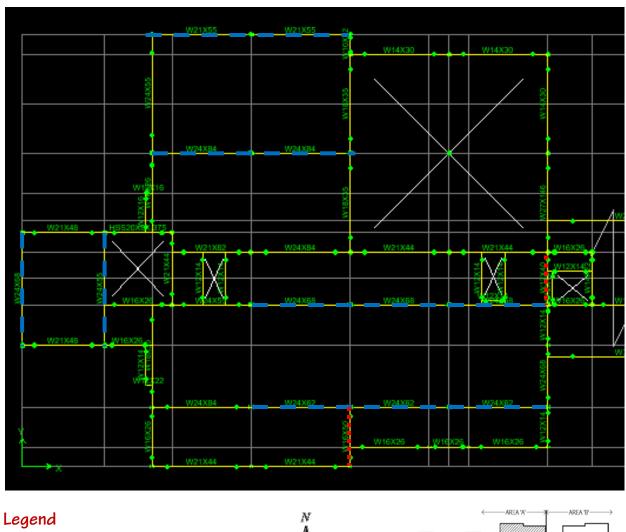

Acknowledgements

This thesis investigation would not have been possible without the help of many people. I would like to thank the following people for their technical, financial, and emotional support:


- My parents, Victoria and Edward Kirk, for providing me with a higher education and supporting me throughout college
- Miami University of Ohio, for allowing me to use their new building for my thesis
- Steve Nearhoof and Alex Wing of Burt Hill Associates, for furnishing a full set of drawings and specifications, and background information about the project
- John Jones, Bart Staley, Mike Thomas, and Cliff Miles of Nitterhouse Concrete Products, Inc., for endless information about precast concrete design, cost, constructability, and scheduling issues
- Dr. Andres Lepage of Penn State, for valuable feedback throughout thesis and technical support
- Dr. John Messner of Penn State, for help with my construction management breadth
- All industry professionals who helped myself and other students on the e-Studio discussion boards for their technical assistance
- Fellow students in Architectural Engineering, for help on numerous issues throughout my project, and for the good memories along the way

Appendix A - Plans and Diagrams

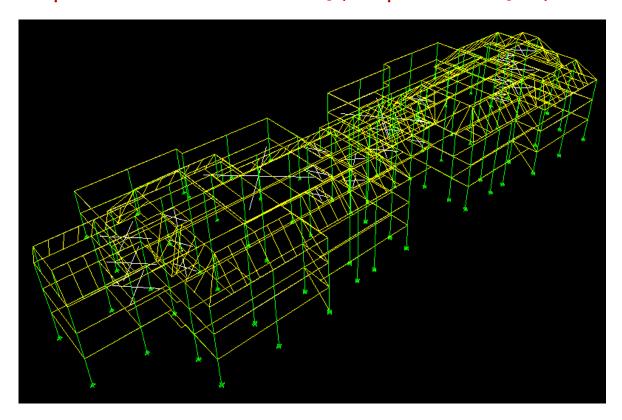
Existing Braced Frame Diagrams



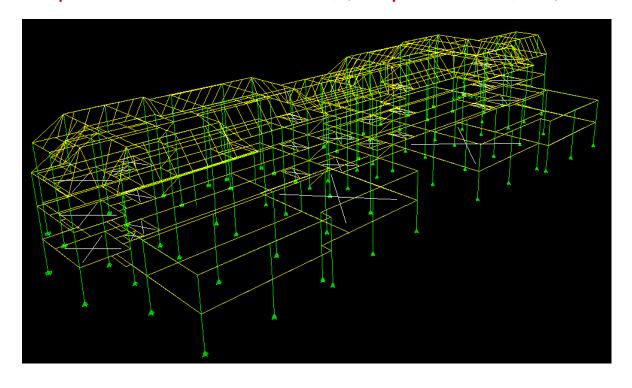
Existing Roof Framing Plan - Area 'A' (West half of building)

Note: The lateral resisting system is symmetric about the center of the building, so the frames are mirrored onto Area B of the building.

• Proposed First Framing Plan - Area 'A' (West half of building)



Moment Frame (blue dashed line)

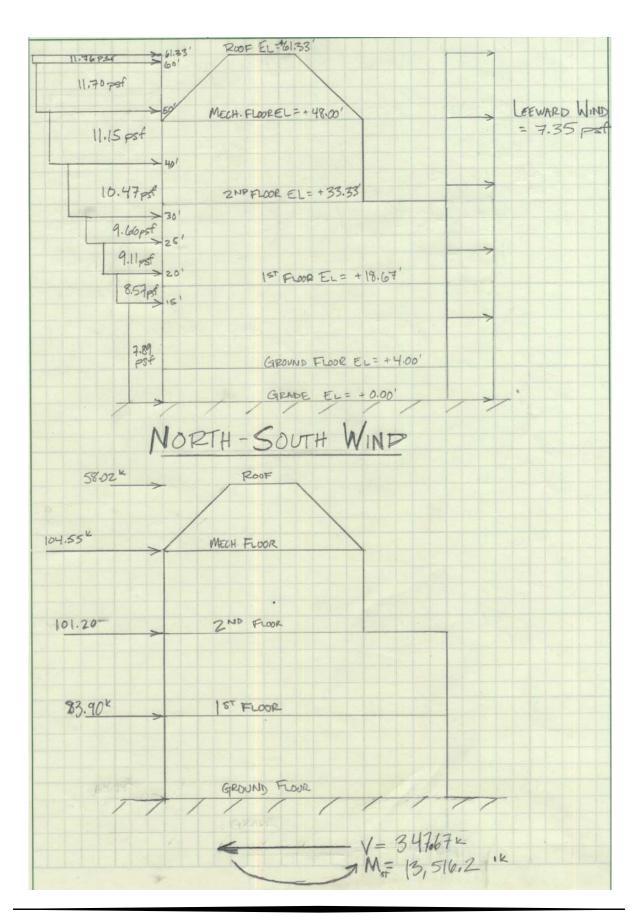

Note: 10" Precast Hollowcore Plank with 2" concrete topping (max.) span N-S (vertically in plan) and are spaced at 4' O.C'

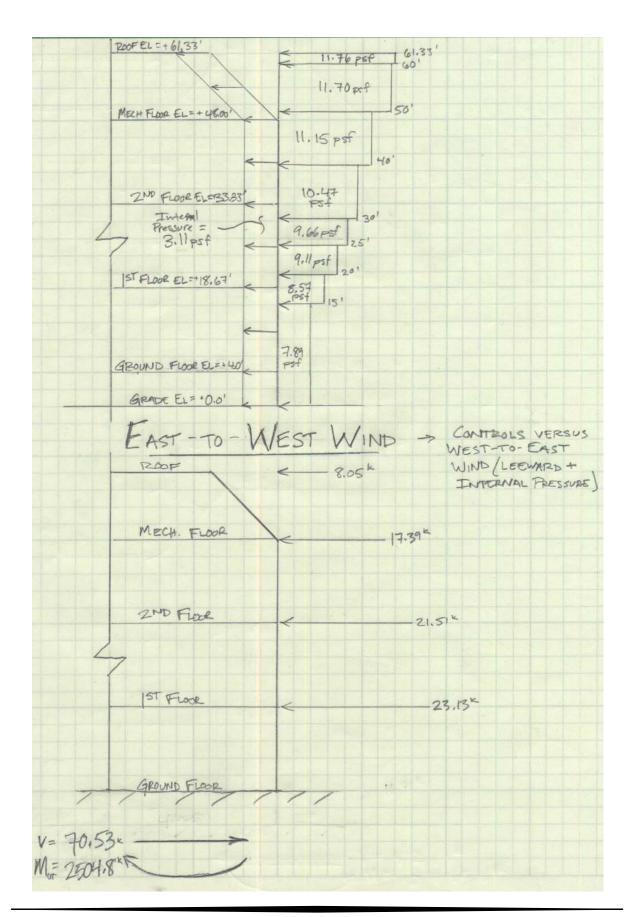
Note: The lateral resisting system is symmetric about the center of the building, so the frames are mirrored onto Area B of the building.

• Proposed Structural Steel Framing (Perspective looking NE)

• Proposed Structural Steel Framing (Perspective looking SW)

Appendix B - Building Loads


Wind Loads


It was approximated that "ground level" of the building is about 4' above grade on average around the perimeter of the building.

		North-So	uth Wind Loa	ading		
Height above	Kz	gz (pcf)		Pressur	e (psf)	
ground (ft)	NΖ	qz (psf)	Windward	Leeward	Sidewall	Internal
0-15	0.57	11.6	7.89	-7.35	-10.29	±3.11
20	0.62	12.6	8.57	-7.35	-10.29	±3.11
25	0.66	13.4	9.11	-7.35	-10.29	±3.11
30	0.70	14.2	9.66	-7.35	-10.29	±3.11
40	0.76	15.4	10.47	-7.35	-10.29	±3.11
50	0.81	16.4	11.15	-7.35	-10.29	±3.11
60	0.85	17.2	11.70	-7.35	-10.29	±3.11
61.33	0.86	17.3	11.76	-7.35	-10.29	±3.11

		East-We	est Wind Load	ding		
Height above	Kz	az (ncf)		Pressur	e (psf)	
ground (ft)	NZ.	qz (psf)	Windward	Leeward	Sidewall	Internal
0-15	0.57	11.6	7.89	-3.88	-10.29	±3.11
20	0.62	12.6	8.57	-3.88	-10.29	±3.11
25	0.66	13.4	9.11	-3.88	-10.29	±3.11
30	0.70	14.2	9.66	-3.88	-10.29	±3.11
40	0.76	15.4	10.47	-2.94	-10.29	±3.11
50	0.81	16.4	11.15	-2.94	-10.29	±3.11
60	0.85	17.2	11.70	-2.94	-10.29	±3.11
61.33	0.86	17.3	11.76	-2.94	-10.29	±3.11

Wind	Direction	North-	-South Wind	East to	West Wind	West t	o East Wind
	Height above		Overturning		Overturning		Overturning
Floor	grade (ft)	Force (k)	Moment (ft-k)	Force (k)	Moment (ft-k)	Force (k)	Moment (ft-k)
Roof	61.33	58.02	3558.4	8.5	521.3	3.47	212.8
Mech.	48.00	104.55	5018.4	17.39	834.7	7.28	349.4
2nd	33.33	101.2	3373.0	21.51	716.9	10.68	356.0
1st	18.67	83.9	1566.4	23.13	431.8	13.74	256.5
Sum		347.67	13516.2	70.53	2504.8	35.17	1174.7

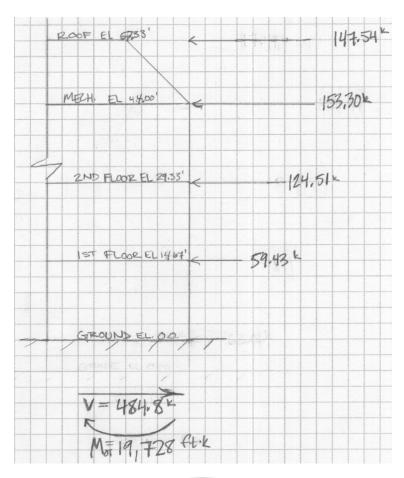
NIND LOAD STORY FORCE CALCULATIONS (365.25) (11.33') (7.89 +7.35) = 64.945 (365.25) (15-11.33) (7.89+7.35)+ (5')(7.35+8.57) +(5'\7.35+9.11) + (1')(7.35+9.66) -83.90K Para = (365.25') (30-26) (9.66-17.35) + (16) (10.47+7.35) + (0.67') (11.15+7.35) Truch = (365,25) (50-40.67) (11.15 +7.35) + (4.67) (11.70 +7.35) = 104.55 Proof = (365,25') (1.33') (1176 + 7.35) + (60-5467) (11.70 + 7.35) = 58.02 EAST-WEST WIND (WINDWARD) Fano = (1341) (11.331) (7.89 + 3.11) = 16.714 $F_{15+} = (34')(15-1133)(2.89+3.11) + (5)(8.57+3.11) + (5)(9.11+3.11) + (1')(9.66+3.11) = 23.13 \times$ P2ND = (1341)[(4)/9.46+3.11)+(3.53)(10.47+3.11)]++(86)[(6.67)(10.47+3.11)+(0.67)(11.15+3.11)]=21.51* Pmech = (86') (9.33') (11.15 + 3.11) + (54.67) (11.70 + 3.11) = 17.39 k Proof = (86) (5-33')(11-70+3-11) + (1-3-3)(11-77-13.11) = 8.50"

• Seismic Loads

Project Location	Univ. of Miami,	Oxford, OH
Project Latitude	39.505833°	
Project Longitude	-84.739167°	
Occupancy Category	III	
Seismic Importance Factor	1.25	
Site Classification	С	
S _s	0.171g	
F _a	1.2	
$S_{MS} = F_a S_s =$	0.205g	
$S_{DS} = (2/3)S_{MS} =$	0.137g	
S ₁	0.073g	
F _v	1.7	
$S_{M1} = F_v S_s =$	0.124g	
$S_{D1} = (2/3)S_{M1} =$	0.083g	
Seismic Design Category	В	
	Structural Steel	System Not
Seismic Resisting System	Specifically Deta	ailed for
	Seismic Resistar	
Direction	<u>N-S</u>	<u>E-W</u>
R	3.0	3.0
C _d	3.0	3.0
h _n	57.33	57.33
C_{u}	1.7	1.7
C_{t}	0.02	0.028
х	0.75	0.8
$T_a = C_t h_n^x =$	0.4167 s	0.7143 s
$T_{max} = C_u T_a =$	0.7084 s	1.2143 s
T _{actual}	1.1608 s	1.8549 s
T _L	12 s	12 s

* Note: T_{actual} calculated by ETABS

North-South Braced Frames


$$C_s = min \begin{cases} S_{DS}/(R/I) = & 0.0570 \\ S_{D1}/(T(R/I)) = & 0.0487 \\ S_{D1}T_L/(T^2(R/I)) = & 0.8244 \end{cases} \geq 0.01$$

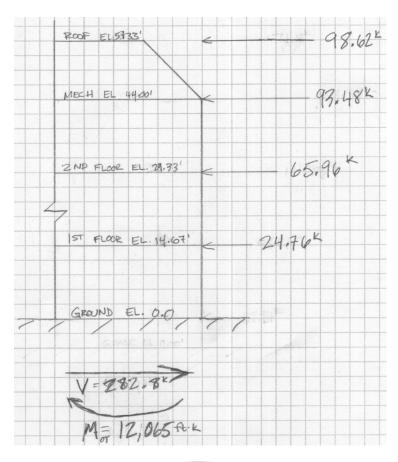
$$Controlling C_s = \qquad \textbf{0.0487}$$

$$W = \qquad 9962 \text{ k}$$

$$V = C_sW = \qquad \textbf{484.8 k}$$

	Lateral Sei	smic Force Distr	ibution Thre	ough the L	evels (N	orth-South Bra	aced Fram	es)
Level	Story Height	Story Weight	Exponent			Story Force	Shear	Moment
	h _x	w	k	$\Sigma \; w_i \; h_i^{k}$	C_{vx}	f _x	V_{x}	M_x
Roof	57.33 ft	1422 k	1.3304	310635	0.3043	147.54 k	147.5 k	8459 ft-k
Mech.	44.00 ft	2101 k	1.3304	322757	0.3162	153.30 k	300.8 k	6745 ft-k
2nd	29.33 ft	2927 k	1.3304	262141	0.2568	124.51 k	425.4 k	3652 ft-k
1st	14.67 ft	3512 k	1.3304	125133	0.1226	59.43 k	484.8 k	872 ft-k
Sum		W = 9962 k		1020666		V = 484	.8 k	M = 19728 ft-k

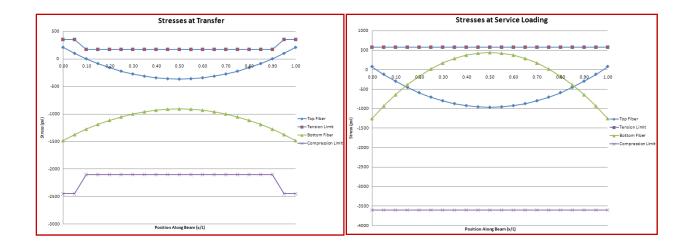
o East-West Moment Frames

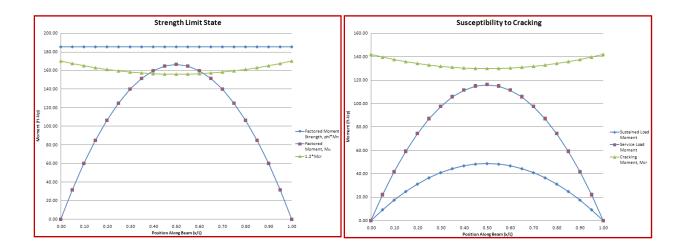

$$C_s = min \begin{cases} S_{DS}/(R/I) = & 0.0570 \\ S_{D1}/(T(R/I)) = & 0.0284 \\ S_{D1}T_L/(T^2(R/I)) = & 0.2806 \end{cases} \ge 0.01$$

$$Controlling C_s = \qquad \textbf{0.0284}$$

$$W = \qquad 9962 \text{ k}$$

$$V = C_sW = \qquad \textbf{282.8 k}$$


	Lateral Sei	ismic Force Dist	ribution Thr	ough the L	evels (E	ast-West Mon	nent Fram	es)
Level	Story Height	Story Weight	Exponent			Story Force	Shear	Moment
	h_x	w	k	$\Sigma w_i h_i^k$	C_{vx}	f _x	V_x	M_x
Roof	57.33 ft	1422 k	1.6775	1266186	0.3487	98.62 k	98.6 k	5654 ft-k
Mech.	44.00 ft	2101 k	1.6775	1200151	0.3305	93.48 k	192.1 k	4113 ft-k
2nd	29.33 ft	2927 k	1.6775	846770	0.2332	65.96 k	258.1 k	1934 ft-k
1st	14.67 ft	3512 k	1.6775	317821	0.0875	24.76 k	282.8 k	363 ft-k
Sum		W = 9962 k		3630927		V = 282	.8 k	M = 12065 ft-k



Appendix C - Structural Depth

30' Hollowcore Plank

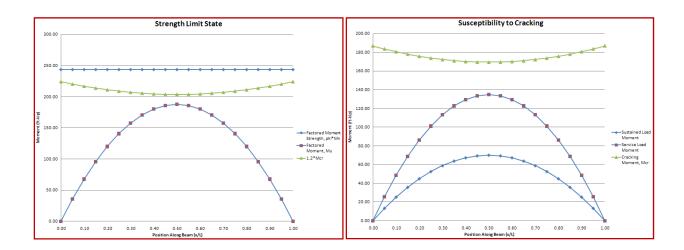
		M _n ΦM _n (M _o	10 206.15 185.53 0. 10 206.15 185.53 31	_	10 206.15 185.53 84. 10 206.15 185.53 106.	10 206.15 185.53 124.	15 185.53	10 206.15 185.53 159.	10 206.15 185.53 166.		10 206.15 185.53 151.	10 206.15 185.53 139.	15 185.53	10 206.15 185.53 106. 10 206.15 185.53 84.	10 206.15 185.53 59.	10 206.15 185.53 31. 10 206.15 185.53 0.	
		T (kips) a (in)	270.51 2.2	0.51 2.2	270.51 2.2 270.51 2.2	270.51 2.2	0.51 2.2	270.51 2.2	70.51 2.2	0.51 2.2	0.51 2.2	270.51 2.2	0.51 2.2	270.51 2.2	0.51 2.2	270.51 2.2	
	0.80%	f _{bs} (ksi) T (k	252.58 27	ш	252.58 27 252.58 27	28	_	252.58 27	252.58 27	27	2.58 27	252.58 27	_	2.58 27	2.58 27	252.58 27 252.58 27	
	le 24-3 le 24-4 le 24-4) soj	0.00218 25	19	18	8 0	18	0.00218 25	9 9	0 80	22 25	18	25 25	25 27 25	0218 25	0.00218 25	-
	(RE) 5000 Table 24-3 0.04 Table 24-3 0.33 Table 24-4 6 psi =	ate	10.25 0.00 10.25 0.00		10.25 0.002 10.25 0.002	10.25 0.002		10.25 0.00	25 0.002	25 0.002	.25 0.00	.25 0.002	25 0.00	25 0.002	.25 0.00	10.25 0.00 10.25 0.00	
	Relaxation (RE) (R = 5000 J = 0.04 C = 0.33 RE = 1396 psi	Ultimate	Щ	Ц			Ĺ	Щ	95 10	53 10	25 10	26 10	56 10	15 16	20 10		
	<u>"</u>	king 1.2*M _{cr}	00 170.40 71 167.65	н	86 163.03 29 161.15	97 159.56		44 156.53	-	٠.	Ľ	ш	_	29 161.15 86 163.03		71 167.65 00 170.40	
	(SH) (1.0 for Pre-T) Table 24-2 = 3.55%	Cracking	581 142.00 581 139.71	÷	581 135.86 581 134.29	581 132.97	÷	581 130.44	,	÷	581 131.04	581 131.89	Ť	581 134.29 581 135.86	581 137.66	581 139.71 581 142.00	-
	Shrinkage (SH) 1.00 (1.0 for Pre-T) 2.26 70 % 6167 psi = 3.555	7.5f _c ^{1/2}	Ш	Ц	-796 5	-718 5	100	-569 5	Ш		5	-655 5		-796	Ц	Ш	
	Shrinkage 1.00 2.26 70 % 6167 psi	.45f° fbot	-2700 -1250 -2700 -1115	3- 002	2700	2700 -7	2700 -6	2700 -5	2700	2002	2700 -60	2700 -6	-	-2700 -7	-	-2700 -1115 -2700 -1250	
	K _{St} = V/S = SH = SH =		-3	-77-	-143 -:	-247	-317 -:	-339	-357	-339 -:	-317 -:	-287	_	-199	-77	80	
	3.91% ft-kips, u	Maust	0.00	17.53	31.17	36.53	44.32	46.76	48.70	46.76	44.32	40.91	36.53	24.84	17.53	9.25	5
	= =	7.5f. ^{1/2}	581	581	581	581	581	581	581	581	581	581	581	581	581	581	3
	Creep (CR) Shrinkage	į	-1250	-641	-387	119	289	374	442	374	289	171	19	-167	-641	-929	1
	$K_{Cr} = \frac{C}{f_{cdr}} = 73$ $f_{cds} = 21$ $f_{cgs} = N/A$ $CR = 678$ Tresses in psi	.60f。	-3600		-3600	-3600		-3600		_	-3600			-3600		-3600	
	Live End	goj	-118	-295	-451	-701	-868	-920	-961	-920	-868	-795	-701	-587	-295	-118	
18. Load L. 30.00 ft No. 600 plf WL. 600 plf		152.83 k	0.00	41.83	74.37	87.15	105.74	111.56	116.20	111.56	105.74	97.61	87.15	59.26	41.83	22.08	5
pan & Lc L Wp. Wh.	Anchorage (ANC) AL = 0.25 in L = 30.00 ft WC = 0 psi @	Service P _e = ·	4.44 in	4.44 in	4.44 in	4.44 in	4.44 in	4.44 in	14.4 i	4.4 i	4.44 in	4.44 in	4.44 in	44 t	4.44 in	4.44 in	
2.00 in Spain & Load 30000 in L 30, 30000 psi w _{LL} 60, 358 im ² 5102 im ² 6.19 in 381 in 824.2 in ² 338 i in ² 338 i in ² 331 in ² 332.9 pf	Anc = 3	O D	-2450	-	-2100	-2100	_	-2100	-	٠.	8	-2100	_	-2100	_	-2450	
3 3 3 3 51 51 1338		.7f°	-2100	-2100	-2100	2100	-2100	-2100	-2100	-2100	-2100	-2100	2100	-2100	-2100	-2100	3
Com	Dead End	.6f°a	Ш	Ц	Ц	Ц					Ц	Ц			Ц	Ц	
A 262 in 2 1 3196 in 14 1 3196 in 14 1 50 1 in 3 5, 640.5 in 3 5, 637.9 in 13	R) @ 3.65% 11.91%	, to	-1484	-1277	-1190	-1052	096-	-932	-909	-932	J96-	-1001	-1052	-1116	-1277	-1374	
Non-composite A 282 in-2 1 3196 in-4 y, 4.99 in X 5.01 in S, 640.5 in-3 S, 637.9 in-3 Weight 272.9 pil	Friction (FR) 0.00125 0.2 0.00 k 0.00 k 0.98i 6.32 ksi 20.67 ksi 1	6F., 1/2 F.	355	177	177	177	177	177	177	177	177	177	177	177	177	355)
ž			177	177	177	177	177	177	177	177	177	177	177	177	177	177	1
Stee	K = 4 Pp = 4 Pp = 4 Pp = 5 Pp = FR Pp = FR = FR Pp = F	3f., 1/2	11	m	39	22	12	13	37	- 22	12	74	52	34	₍ د	7 7	
ioned Mild Sursesney Mild Sursesney 7 Bars Surands 7 Bars Award Old Bar # Award 177 Find 4 9 1.75 in d 9 1.75 in d 9 1.75 in Eps 29000 ksi	3.65% 3.65% 11.91%	8 8 7	0.00 21 5.83 10	ш	15.66 -84 19.65 -159	23.03 -22	\perp	29.48 -343		_		25.79 -274	_	19.65 -159 15.66 -84	1.05	5.83 101	_
290 290 290	3.65% ii 3.65% ii 11.91% e Checks	= 167.18		Ì					Ш					Ì	ľ		
Sugar Inc.	ortening 6.32 ksi 20.67 ksi	Transfer P ₀ = e (in)	3.24	3.2	3.24	3.24	3.24	3.24	3.24	3.2	3.24	3.24	3.2	3.24	3.2	3.24	,
Pre-T WWC 500 psi 0.75 0.75 6.13 in .563 in 270 ksi Jacking	Losses Elastic Shortening (ES) F ₁ = 173.50 k K ₄₀ = 1.0 K ₄₀ = 1.0 K ₄₀ = 7.0 F ₄	on along × (ft)	0.00	3.00	6.00	7.50	10.50	12.00	15.00	18.00	19.50	21.00	22.50	24.00	27.00	30,00	2
Concrete 1	Losses	Location along beam x/L x (ft)	0.00	0.10	0.15	0.25	0.35	0.40	0.50	09:0	0.65	0.70	0.75	0.80	06:0	0.95	?

• 36' Hollowcore Plank

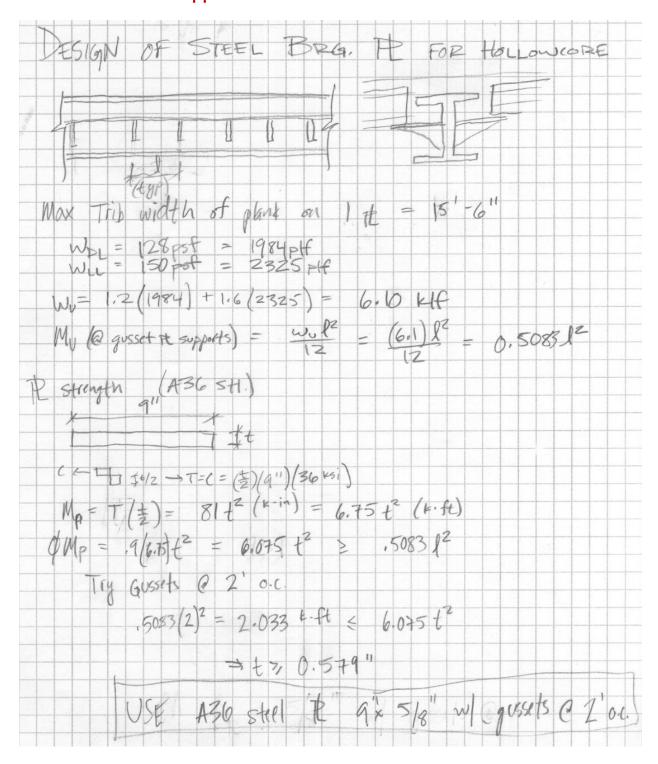
Pre-Tensioned
Concrete
NWC Strands 7 Bars

f. 3500 psi d_{mars} 0.6 lin Bar #
f. 6000 psi A_{mars} 0.271 m²2 A_{ms}

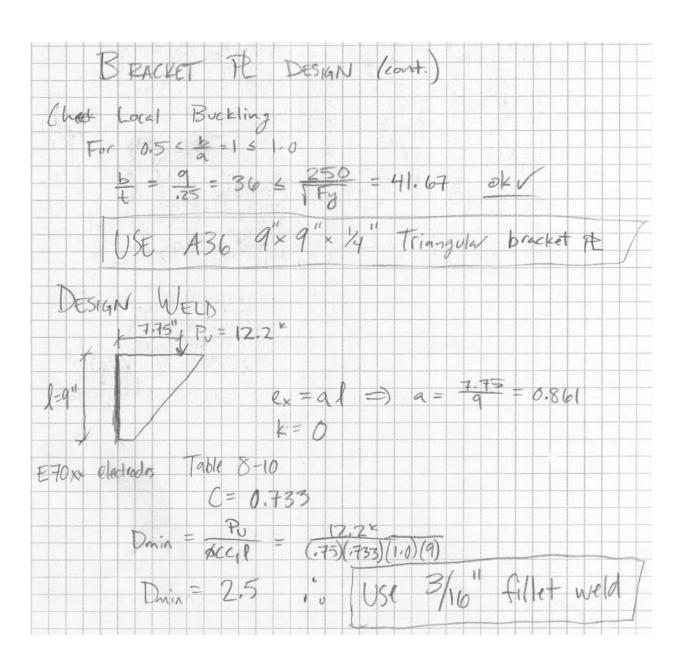
f. 580.9 psi 9. 1.75 in d
b. 46.13 in 9. 1.75 in d
b. 46.13 in 5.29000 ksi
f_m 270 ksi


Jacking Pull Ratio

Non-composite


A 262 in 2 1 3196 in 4 3, 4.99 in 3, 6.01 in 5, 640.5 in 3 8, 637.9 in 3 Weight 272.9 pff

Elastic Sho $F_{j} = 246.08 \text{ K}$ $K_{es} = 1.0$ $K_{cr} = 0.9$ $K_{cr} = 1035 \text{ psi}$ $E_{gr} = 1035 \text{ psi}$ $E_{gr} = 1035 \text{ psi}$ $E_{gr} = 1035 \text{ psi}$	Elastic Shortening (ES) = 246.08 k = 1.0 = 0.9 = 1035 psi = 3 = 8900 psi = 3	3.62%	$K = \frac{1}{100} = $	正 -	[FR]		Dead End	Anc = :	Anchorage (ANC) AL = 0.25 in L = 36.00 ft AC = 0 psi @		$K_{Cr} = f_{ctr} = f_{cts} = f_{ct$	Creep (CR) K _c = 2.0 f _{cr} = 1035 psi c _{obs} = 315 psi f _{cps} = N/A CR = 9453 psi =	1_1 1 1	3.84% A > A	S	Shrinkage (SH) 1.00 (1.0 fo 1.00 (2.26 70% 6167 psi =	(age (SH) 1.00 (1.0 for Pre-T) Table 24-2 2.26 0% 7 psi = 2.51	%	Relaxation (RE) K _m = 5000 J = 0.04 C = 0.33 RE = 1326 psi	(RE) 5000 Table 24-3 0.04 Table 24-3 0.33 Table 24-4	24 4 4 4	0.54%	0.54%	0.54%
Live End Total Losses Live End Stress and UI	Total Losses Live End 25.85 ksi 10.50% Stress and Ultimate Checks	3.62% 10.50% Thecks	Dead End Dead End	nd 8.90 ksi	-	3.62%				U	s. Stresse	Units: Stresses in psi, Moments in ft-kips, unless otherwise noted	nents in ft-	-kips, unle	sss other	wise note	70							
Location along The Deam	Transfer $P_0 = 237.18 \mathrm{k}$	37.18 k							Service P _e = 220.23	20.23 k								Cracking	Ultimate	ate				
x (ft) e	e (in) M _{DL}	ftop	9 3f _{ci} 1/2	6f' _a ^{1/2}	fbot	j.	.6f _{°i} .71	.7f°ci e	e (in) M	M _{total} f _{top}	.60f°	foot	7.5f° 12 M	M _{sust} f _{top}	, .45f°	f foot	7.5f° 172	M _{cr}	1.2*M _{cr} d _p (in)	, η	f _{ps} (ksi)	(is:	T (kips)	si) T (kips) a (in)
)	3.24	Ц	299 17	77 3	355	-2105	-2100		4.44 in	00:00	115 -3600	Ц	581	0.00	115 -2700				Ц	10.25 0.00309		.29		372.59
0.05 1.80	3.24	4	141 17	77		-1948	-2100	_	4.44 in	25.64		_	581							10.25 0.00309	_	.29		372.59
3.60	3.24	- 1	1,	1,		-1807	-2100		4.44 in	48.58	-320 -3600	`	581	1	-111 -2700				_	10.25 0.00309		.29	_	372.59
0.15 5.40	3.24	22.55	-125 17	1 1	1//	-1683	-2100	-2100	4.44 In	86.36	-502 -3600	-800	581	35.77	-205 -2700	00 -1281	581	175.03	213.82 10	10.25 0.00309	39 245.29 30 245.29	20	372.59	
	3.24	_	-324 17	1 1		-1484	-2100		4.44 in	101.20	-792 -3600	L	581	52.60					Ļ	10.25 0.00309 245.29	39 245	29	372.59	372.59
10.80	3.24	37.14	-399	1 1	177	-1409	-2100	-2100	4.44 in	113.34	-901 -3600	151-	581	58.91	-413 -2700	.00 -944	581	172.46 206.95		10.25 0.00309 245.29	39 245	29	29 372.59	29 372.59 3.044 271.00 243.90
12.60	3.24	40.23	-457 17	77	177	-1351	-2100	-2100	4.44 in	122.79	-985 -3600	-14	581	63.82	-457 -2700	.00 -872		581 171.25 205.50		0.25 0.003	39 245	29	29 372.59	10.25 0.00309 245.29 372.59 3.044 271.00 243.90
14.40	3.24	42.44	-499	1 1	177	-1310	-2100	-2100	4.44 in	129.54	-1046 -3600	00 84	581	67.33	-488 -2700	.00		581 170.38 204.46		0.25 0.003	39 245.	29	29 372.59	10.25 0.00309 245.29 372.59 3.044 271.00 243.90
16.20	3.24	43.77	-524	77	177	-1285	-2100	-2100	4.44 in	133.58	-1082 -3600		581		-507 -2700		581	169.86 203.83		0.25 0.003	39 245.	29	29 372.59	10.25 0.00309 245.29 372.59 3.044 271.00 243.90
18.00	3.24		-532 17	1 1	177	-1277	-2100	-2100	4.44 in	134.93	-1094 -3600		581		-513 -2700	.00 -780	581	169.69 203.63		0.25 0.003	39 245.2	53	29 372.59	10.25 0.00309 245.29 372.59 3.044 271.00 243.90
19.80	3.24	43.77	-524	1 1	177	-1285	-2100	-2100	4.44 in	133.58	-1082 -3600	143	581	69.43	-507 -2700	162- 00.	581	169.86 203.83		0.25 0.003	39 245.3	29	29 372.59	10.25 0.00309 245.29 372.59 3.044 271.00 243.90
21.60	3.24	42.44	499	1 1	. 177	-1310	-2100	-2100	4.44 in	129.54	-1046 -3600	94	189	67.33	-488 -2700	.00 -821		581 170.38 204.46		0.25 0.003	39 245	29	29 372.59	10.25 0.00309 245.29 372.59 3.044 271.00 243.90
23.40	3.24	40.23	457 17	1 1	177	-1351	-2100	-2100	4.44 in	122.79	-985 -3600	-14	581	63.82	-457 -2700		581	171.25 205.50		0.25 0.003	39 245	29	29 372.59	10.25 0.00309 245.29 372.59 3.044 271.00 243.90
25.20	3.24	37.14	-399	1 1	177	-1409	-2100	-2100	4.44 in	113.34	-901 -3600	151-	581	58.91	-413 -2700	.00 -944	581	172.46 206.95		0.25 0.003	39 245	29	29 372.59	10.25 0.00309 245.29 372.59 3.044 271.00 243.90
27.00	3.24	33.16	-324	1 1	177	-1484	-2100	-2100	4.44 in	101.20	-792 -3600	00 -328	581	52.60	-356 -27	-356 -2700 -1036	581	174.02	208.83	10.25 0.00309	39 245.29	.29		.29 372.59 3.044 271.00
28.80	3.24	28.30	-233	77	177	-1575	-2100	-2100	4.44 in	86.36	-659 -3600	00 -544	581	44.88	-287 -2700	00 -1148	581	175.93	211.11	10.25 0.00309	39 245.29	.29		.29 372.59 3.044
30.60	3.24	22.55	-125 17	77	177	-1683	-2100	-2100	4.44 in	68.82	-502 -3600	008- 00	281	35.77	-205 -2700	1281	581	178.18	213.82	10.25 0.00309	39 245.29	.29		.29 372.59 3.044
32.40	3.24	15.92	0 17	1 1	177	-1807	-2100	-2100	4.44 in	48.58	-320 -3600	-1094	581	25.25	-111 -27	-2700 -1434	581	180.78	216.94	10.25 0.00309	39 245.29	.29		.29 372.59 3.044 271.00 243.90
0.95 34.20	3.24	_	141	177 3	355	-1948	-2100	-2450	-2450 4.44 in	25,64			581	13.33	-4 -27	-4 -2700 -1608		581 183.73 220.47		0.25 0.003	245	29	29 372.59	



• Steel Plate to Support Hollowcore

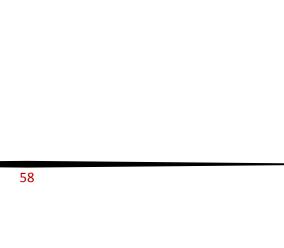
	ESIGN	OF	BRACKET	PLATE
GNOVE FOR		P		Py = Wy 1 = (6.1 KIF)(2') = 12.2 K
T			a=b=9"	Need 2 1/2" min. bearing 1. Pmx = 9-25 = 7.75"
		b=9" }		Mu = (12.2) (7.75") = 94.55 "K
Cheek F	QMn 3	M _v = 9		
	Omn=	0.9 Fy		(364)(10)(10) = (437.44) t
			4.55 nt = 137.44 = 1	0.216"
Check	Flex. of	4	ASO Free e	dgė:
	PU = 17	2.2 5	QPn=	Fy = lot 27(=)2-0.25/====================================
		0.21	36)(0.21)	
		= 15.3		

• Steel Beams

OK?	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ŏ	Ŏ	OK	ÖK	οK	οK	Ŏ	Ŏ	OK	OK	Ŏ	OK	Ŏ	K
New Total Deflection	0.044	0.518	0.168	1.112	0.942	1.487	1.281	1.281	0.138	1.281	0.712	1.299	0.926	0.601	0.945	0.139	1.097	0.201	0.948	0.598	1.112	0.293	0.147	2.313	1.382	1.382	1.102	0.069	1.102	1.102	0.069	1.102	1.440	1.440	1.440	1.440
I (in ⁴) De	843	518	2850	626	1332	2070	843	843	301	843	1550	2370	1350	301	1350	301	068	301	1350	301	626	301	301	3610	2370	2370	301	301	301	301	301	301	843	843	843	843
ØM _p (ft- kips)	358	274	915	398	540	840	358	358	166	358	574	840	203	166	203	166	420	166	203	166	398	166	166	1060	840	840	166	166	166	166	166	166	358	358	358	358
New Beam 9	W21x44	W16x40	W27x84	W21x48	W21x62	W24x84	W21x44	W21x44	W16x26	W21x44	W24x62	W24x84	W24x55	W16x26	W24x55	W16x26	W18x55	W16x26	W24x55	W16x26	W21x48	W16x26	W16x26	W30x90	W24x84	W24x84	W16x26	W16x26	W16x26	W16x26	W16x26	W16x26	W21x44	W21x44	W21x44	W21x44
ı (in⁴)	2850	301	2850	2850	1070	1170	510	984	9.88	984	1070	1070	843	612	612	9.88	156	9.88	843	510	2850	510	9.88	2850	843	843	301	301	301	301	301	301	843	843	843	843
ØM _p (ft- kips)	915	166	915	915	499	548	249	461	65.2	461	499	499	321	294	294	65.2	110	65.2	321	249.5	915	249	65.2	915	358	321	166	166	166	166	166	166	358	358	321	321
Orig. Beam Size	W27x84	W16x26	W27x84	W27x84	W18x55	W18x71	W18x35	W18x60	W12x14	W18x60	W18x65	W18x65	W21x44	W18x40	W18x40	W12x14	W12x22	W12x14	W21x44	W18x35	W27x84	W18x35	W12x14	W27x84	W21x44	W21x44	W16x26	W16x26	W16x26	W16x26	W16x26	W16x26	W21x44	W21x44	W21x44	W21x44
Total Defl. (in.)	0.013	0.891	0.168	0.374	1.173	2.631	2.118	1.098	0.470	1.098	1.031	2.877	1.482	0.295	2.085	0.471	6.261	0.683	1.519	0.353	0.374	0.173	0.501	2.929	3.884	3.884	1.102	0.069	1.102	1.102	0.069	1.102	1.440	1.440	1.440	1.440
Total Defl. Total L/240	1.5	0.765	2.5	1.242	1.2	1.5	1.5	1.5	0.671	1.5	1.5	1.5	1.2	1.025	1.2	0.671	1.159	0.671	1.2	1.025	1.242	0.725	0.725	2.5	1.5	1.5	1.2	9.0	1.2	1.2	9.0	1.2	1.5	1.5	1.5	1.5
Max. M _u (ft-kips)	306.71	256.68	884.39	387.02	487.53	764.73	268.07	268.07	51.71	268.07	571.80	764.73	485.63	135.88	496.05	51.90	406.99	75.18	497.35	135.57	387.02	93.92	47.19	743.65	813.60	813.60	128.65	32.16	128.65	128.65	32.16	128.65	301.19	301.19	301.19	301.19
Additional M _u (ft-kips)	298.74		847.26								298.74			39.92						39.92																
Self Wt. + plate (plf)	29	20	66	63	6	114	55	22	44	22	65	114	70	55	20	29	85	99	85	20	63	41	53	91	114	114	41	41	41	41	41	41	59	29	29	29
L, Span (ft)	30	15.3	20	24.83	24	30	30	30	13.42	30	30	30	24	20.5	24	13.42	23.17	13.42	24	20.5	24.83	14.5	14.5	20	30	30	24	12	24	24	12	24	30	30	30	30
(Jsd)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
DL (psf)	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108
South Trib. Width (ft)	0	15		17.08	8	8	8	8	3	8	8	8	8	90'9	15.5	7.84	7.84	7.84	15.5	90'9	0	0	0	0	6	9	0	0	0	0	0	0	0	0	0	0
North Trib. Width (ft)	0	15		0	15	15	0	0	4.75	0	0	15	15	0	8	0	12.75	3.46	00	0	17.08	12.17	80'9	7.84	15.5	15.5	9	9	9	9	9	9	6	6	6	6
End 2	8, G	8, F	6, E.3	0.8, E.2	2, E	3, E	4, E	5, E	5.3, E	7, E	8, E	9, E	9.8, E	1.2, D	2, D	5.3, D	5.7, D	6, D	9.8, D	11, D	0.8, C.6	1, C.6	11, C.6	6, 33.33'	2, C	10, C	3.8, B	4.2, B	5, B	6.8, B	7.2, B	8, B	2, A	3, A	9, A	10, A
End 1	7, 6	254', F	5, E.3	0.2, E.2	1.2, E	2, E	3, E	4, E	5, E	6, E	7, E	8, E	9, E	0.8, D	1.2, D	5, D	5.3, D	5.7, D	9, D	9.8, D	0.2, C.6	0.8, C.6	10, C.6	5, 33.33'	1, C	9, C	3, B	3.8, B	4.2, B	e, B	6.8, B	7.2, B	1, A	2, A	8, A	9, A
	Special 7	2	Special 5	9	1	2	3	4	2	9	Special 7	8	5	Special 0	1	5	5	5	5	Special 9	9	9	1	2	1	6	3	3	4	9	9	7	1	2	8	5

Simple Beams

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 OK? New Total
Deflection
0.422
0.422
0.422
0.422
0.370
0.370
0.370 0.342 0.342 0.342 0.342 0.342 I (in⁴) 1830 1830 1830 1830 1830 473 473 473 664 664 664 664 664 574 574 574 574 574 840 840 840 840 664 ϕM_p (ftkips) W21x55 W21x55 W21x55 W21x55 W24x84 W24x68 W24x68 W24x68 W24x68 W24x62 W24x62 W24x62 W24x62 W24x62 W24x62 W24x84 New Beam W24x84 W24x68 Size 1830 1830 1830 1830 1830 1830 I (in⁴) 1550 1550 1550 1550 2850 2850 1830 ØM_p (ft-kips) 840 840 W24x62
W24x62
W24x62
W24x84
W27x84
W24x84
W21x83
W21x83
W21x83
W21x83 W21x83 W21x83 Orig. Beam W21x83 W21x83 W21x83 Size 0.310 0.310 0.310 0.308 0.308 0.342 0.342 0.342 0.342 0.342 0.342 0.357 Deflection Total Total Defl. Limit = L/240 398.61 398.61 398.61 398.61 727.02 727.02 727.02 727.02 519.24 519.24 519.24 519.24 519.24 540.96 475.26 475.26 475.26 464.40 Max. M_u,end (ft-kips) 475.26 464.40 464.40 530.10 M_wend (ft-kips) 398.61 398.61 398.61 727.02 727.02 89.11 519.24 89.16 519.24 94.68 519.24 85.21 519.24 108.78 519.24 124.59 540.96 103.75 475.26 519.24 519.24 540.96 727.02 44.99 44.99 44.99 99.68 99.68 118.12 126.09 96.68 M_u, Seismic Self Wt. + plate (plf) L, Span (ft) 100 100 100 100 100 100 100 100 100 100 LL (psf) 108 108 108 108 108 108 108 108 108 108 108 108 108 108 DL (psf) 81 81 88 18 12 11 12 12 12 15.5 15.5 15.5 15.5 15.5 15.5 South Trib. Width (ft) North Trib. Width (ft) 15.5 15 15 15 0 0 0 8 8 8 8 1 End 2 2, D 10, F 8, D 0 '6 End 1 4, D 6, D 7, D 8, D


1st Floor Fixed Beams

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 š š 1.382 1.102 0.069 0.945 0.962 0.908 1.112 0.293 0.501 2.348 0.201 New Total Deflection 0.911 1.097 I (in⁴) 1350 1350 1350 1350 2850 959 959 959 2370 2370 2370 2370 2370 1350 301 890 301 301 959 301 88.6 3610 2370 2370 301 301 301 301 843 843 301 1060 840 166 166 166 166 166 168 358 358 ØM_p (ft-kips) W24x55 W24x55 W27x84 W27x84 W24x84 W24x84 W12x14 W24x84 W12x14 W24x84 W24x84 W24x84 W21x48 W16x26 W24x55 W16x26 W16x26 W12x14 W24x84 New Beam I (in⁴) 2850 2850 2850 2850 2850 1070 1170 2100 1830 88.6 984 1070 1070 88.6 156 88.6 843 510 2850 510 88.6 2850 843 249 249 249 915 915 499 750 664 664 461 461 249.5 915 249 ØM_p (ft-kips) 321 294 294 65.2 65.2 W18x35 W18x35 W27x84 W27x84 W18x71 W24x76 W18x71 W18x60 W12x40 W18x60 W1 W12x14 W12x22 W12x14 W21x44 W18x35 W27x84 W18x35 W12x14 W27x84
W21x44
W21x44
W16x26
W16x26 Orig. Beam W18x35 Size 3.884 3.884 1.102 0.069 0.703 0.703 0.374 1.171 1.466 1.682 0.470 0.470 3.128 3.115 2.877 1.482 0.295 6.261 0.683 1.521 0.663 0.374 0.173 2.085 Total Defl. (in.) 1.5 1.5 1.5 0.671 1.2 1.025 1.242 0.725 Total Defl. Limit = L/240 0.671 1.025 0.671 498.15 498.15 498.15 498.15 486.32 764.73 764.73 764.73 764.73 764.73 764.73 764.73 764.73 764.73 764.73 764.73 764.73 764.73 764.73 764.73 764.73 764.73 764.73 51.90 406.99 75.18 497.95 135.57 387.02 93.92 753.40 813.60 813.60 128.65 32.16 128.65 32.16 32.16 301.19 301.19 301.19 Max. M_u (ft-kips) Additional M_u (ft-kips) 39.92 39.92 Self Wt. + plate (plf) 55 70 29 85 56 92 50 63 41 29 1114 1114 1114 411 411 411 411 411 59 59 59 20.5 Span (ft) 13.42 14.5 20.5 LL (psf) 108 108 108 108 108 108 108 108 108 108 108 108 DL (psf) 108 108 108 108 108 108 South Trib. Width (ft) 15 15 15 6.08 15.5 17.08 12.17 6.08 15.5 North Trib. Width (ft) 7.84 End 2 11, C.6 6, 33.33' 11, D 0.8, C.6 1, C.6 e, D Special 9.8, D
0.2, C.6
0.8, C.6
10, C.6
5, 33.33 End 1 5.7, D pecial 0.8, D ۵

2nd Floor Simple Beams

New Total Deflection 0.342 0.342 0.342 0.342 0.342 0.380 1140 1140 1140 2370 2370 2370 2100 I (in⁴) 2100 2100 2100 1830 1830 1830 1830 1830 1830 750 664 664 664 664 664 664 574 574 574 750 ϕM_p (ft-840 840 kips) W21x55 W21x55 W21x55 W21x65 W24x84 W24x84 W24x76 W24x68 W24x62 W24x62 W24x62 W24x62 W24x68 W24x68 W24x68 New Beam W24x68 W24x68 W24x76 W24x76 W24x84 W24x84 Size I (in⁴) 1480 1480 1480 959 959 959 1350 1350 1830 1830 1350 1480 1350 398 398 398 398 503 503 664 900 900 Orig. Beam ØMp (ftkips) W21x48 W21x48 W21x48 W21x48 W24x55 W24x68 W24x68 W30x90 W24x55 W24x55 W21x68 W21x68 W21x68 W21x68 W21x57 W21x57 W21x57 W21x57 W21x57 W21x57 Size 0.423 0.423 0.423 0.423 0.222 0.436 0.423 0.423 Deflection Total Total Defl. Limit = L/240 398.61 398.61 398.61 727.02 727.02 661.14 519.24 519.24 519.24 519.24 519.24 519.24 519.24 661.14 475.26 475.26 464.40 464.40 Max. Mu,end 663.57 727.02 (ft-kips) 398.61 398.61 398.61 398.61 727.02 727.02 661.14 661.14 663.57 475.26 475.26 464.40 464.40 M_v,end 519.24 519.24 519.24 (ft-kips) 519.24 519.24 727.02 727.02 30.23 30.23 25.28 25.28 69.13 61.85 37.44 14.10 66.32 113.18 96.63 100.24 100.30 92.77 M_u, Seismic 40.42 85.79 87.58 87.60 68.19 99.61 Self Wt. + plate (plf) 85 85 85 85 114 114 106 106 114 1114 98 98 98 98 98 98 98 98 92 92 92 L, Span (ft) 100 100 100 100 100 100 100 100 (Jsd) 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 PP (psf) 15 South Trib. Width (ft) 15.5 15.5 15.5 15.5 15.5 15.5 North Trib. Width (ft) 15.5 15.5 15.5 15 15 End 2 7, D 8, D End 1 7, % H H H pecial

2nd Floor Fixed Beams

Mech. Floor Simple Beams

		North Trib	South Trib	2	=	a S nen S	Solf W/+ +	Additional	Max M		Total Dafi	Total Dafi	Orig Beam	MM (ft-	-	Mea Roam	m 0/M (ft-	Н	New Total	lete	Г
		₹ ≤	Width (ft)	(psf)	_			M _u (ft-kips)	(ft-kips)		Limit = L/240	(in.)		kips)	I (in ⁴)			I (in ⁴)		ion OK?	Ċ.
0	0		6	118	150	30	63		394.88	~	1.5	1.152	2 W21x44	1 503	3 1350	0 W24x55		3 1350		1.152 OK	$_{\times}$
0	0		6	118	150	30	63		394.88	~	1.5					0 W24x55	55 503	3 1350			$_{\prec}$
0	0		6	118	150	30	63		394.88	~	1.5	1.152	2 W24x57	7 503	3 1350	0 W24x55	55 503	3 1350		1.152 Ok	$_{\times}$
0	0		6	118	150	30	63		394.88	3	1.5	1.152	2 W24x58	3 503	3 1350	0 W24x55	55 503	3 1350		1.152 OK	¥
0	0		6.54		150	20	139		832.02	ċ	2.5	3.219	9 W27x84	1 915	5 2850	66x0EW 01	1170	0668 0		2.299 OK	¥
0	0		17.08	118	150 2	24.83	20		508.77	4	1.242	0.481	1 W27x84	1 915	5 2850	0 W21x6	52 540	0 1330		1.031 OK	¥
6	6		8		150	24	82		474.42	č	1.2	1.342	2 W18x55	5 420	068 0	30 W24x55		3 1350		0.885 Ok	¥
6	6		8	118	150	30	106		744.12	č	1.5		t W18x71	1 548	8 1170	70 W24x76		0 2100		1.395 Ok	¥
0	0		8	118	150	30	29		351.41	1	1.5	0.659	9 W24x76	5 750	0 2100	00 W24x55	55 503	3 1350		1.026 OK	¥
0	0		8		150	30	59		351.41	1	1.5	0.757	7 W24x68	3 664	4 1830	30 W24x55	55 503	3 1350		1.026 OK	$_{\times}$
0	0		8		150	30	29		351.41	1	1.5	1.407	7 W18x60	194 461	1 984	34 W24x55	55 503	3 1350		1.026 OK	¥
0	0		8	118	150	30	59		351.41	1	1.5	1.294	4 W18x65	5 499	9 1070	70 W24x55	55 503	3 1350		1.026 Ok	$_{\times}$
6	6		8		150	30	106		744.12	c.	1.5	2.738	3 W18x65	5 499	9 1070	70 W24x76	750 750	0 2100		1.395 Ok	$^{\times}$
6	6		8	118	150	24	85		474.42	ċ	1.2	1.417	7 W21x44	1 321	1 843	13 W24x55	55 503	3 1350		0.885	$_{\times}$
0	0		80.9	ı	150	20.5	99	39.92	165.33	*	1.025	189.0	7 W18x40	7 294	4 612	12 W16x26	26 166	6 301		1.017 Ok	$^{\times}$
8	8		15.5	118	150	24	86		654.13	3	1.2	2.690) W18x40	294	4 612	12 W24x68	58 664	4 1830		0.900 Ok	¥
0	0		7.84		150 1	13.42	50		68.13	8	0.671	0.605	5 W12x14	1 65.2	2 88.6	.6 W16x26	26 166	6 301		0.178 OK	¥
12.75	12.75		7.84	118	150 2	23.17	82		534.11	1	1.159	8.031	1 W12x22	110	0 156	6 W21x6	52 540	0 1330		0.942 Ok	¥
3.46	3.46		7.84	118	150 1	13.42	99		98.59	6	0.671	0.876	5 W12x14	1 65.2	2 88.6	.6 W16x26	26 166	6 301		0.258 Ok	$_{\perp}$
8	8		15		150	24	95		639.88		1.2	1.910) W21x44	1 321	1 843	13 W24x68	58 664	4 1830		0.880	¥
0	0		90'9		150	20.5	41	39.92	164.38	3	1.025	0.449	9 W18x35	5 249.5	5 510	.0 W16x26	26 166	6 301		1.010 Ok	¥
0.8, C.6 17.08	17.08		0		150 2	24.83	20		508.77		1.242	0.481	1 W27x84	1 915	5 2850	50 W21x62	52 540	0 1330		1.031 OK	¥
12.17	12.17		0		150	14.5	41		123.35	-	0.725	0.222	2 W18x35	5 249	9 510	10 W16x26	26 166	6 301		0.376 OK	¥
11, C.6 6.08	90'9		0	118	150	14.5	50		61.89	ť	0.725	0.642	2 W12x14	1 65.2	2 88.6	.6 W12x14	14 65.2	2 88.6		0.642 Ok	¥
6, 33.33' 7.84	7.84		0		150	20	144		988.92	č	2.5	3.820) W27x84	1 915	5 2850	0 W30x116	1530	0 4930		2.208 OF	¥
	15.5		6		150	30	132		1069.61	1	1.5	4.993	3 W21x44	1 358	8 843	66x0EM E1	1170	0668 0		1.055 01	¥
15.5	15.5		6		150	30	132		1069.61	1	1.5	4.993	3 W21x44	358	8 843	13 W30x99	1170	0668 0		1.055 Ok	¥
15.5	15.5		6	118	150	30	132		1069.61	1	1.5	4.993	3 W21x44	1 321	1 843	13 W30x99	1170	0 3990		1.055 OK	¥
9	9		0		150	24	46		168.83	3	1.2		1 W16x26	5 166	6 301	01 W16x31	31 203	3 375		1.135 OK	¥
9)	6	0	118	150	12	41		42.10	(9.0	0.088	3 W16x26	5 166	6 301)1 W16x26	26 166	6 301		0.088 Ok	¥
))	6	0	118	150	24	46		168.83		1.2	1.414	1 W16x26	5 166	6 301)1 W16x31		3 375		1.135 Ok	¥
		6	0	118	150	24	46		168.83		1.2		1 W16x26	5 166	6 301)1 W16x31		3 375		1.135 Ok	*
))	6	0	118	150	12	41		42.10		0.6	0.088	3 W16x26	5 166	6 301	01 W16x26	26 166	6 301		0.088 Ok	$_{\times}$
		6	0		150	24	46		168.83	3	1.2	1.414	1 W16x26	5 166	6 301	01 W16x31		3 375		1.135 OK	$_{\mathbf{Y}}$
		9	0	118	150	30	63		394.88	3	1.5			1 358	8 843	13 W24x55	55 503	3 1350		1.152 OK	×
		9	0	118	150	30	63		394.88	~	1.5		5 W21x44		8 843	13 W24x55	55 503	3 1350		1.152 Ok	Х
01	0,	9	0		150	30	63		394.88	~	1.5	1.845	5 W21x44		1 843	13 W24x55		3 1350		1.152 OK	*
6	6		0		150	30	63		394.88	3	1.5		5 W21x44	1 321	1 843	13 W24x55		3 1350		1.152 0	Х

Mech. Floor

OK? New Total Deflection 0.383 0.383 0.383 0.383 0.383 I (in⁴) 750 750 750 750 750 750 750 750 ϕM_p (ft-kips) W24x76 W24x76 W24x76 W24x76 W24x76 W24x76 W24x84 W24x76 W24x76 New Beam Size I (in⁴) 1480 1480 1480 1480 1480 1170 1170 1170 1170 ØM_p (ft-kips) W21x68 W21x68 W21x68 W21x68 W21x68 W21x68 W21x68 Orig. Beam Size Total Deflection Total Defl. Limit = L/240 682.11 682.11 682.11 682.11 682.11 710.73 624.87 610.56 Max. M_u,end (ft-kips) 682.11 682.11 682.11 682.11 682.11 710.73 624.87 624.87 M_u,end (ft-kips) 50.21 43.88 65.02 64.84 43.05 51.05 55.13 41.47 60.82 Seismic Σ Self Wt. + plate (plf) Span (ft) 150 150 150 150 150 150 150 150 LL (psf) 118 118 118 118 118 118 118 118 118 DL (psf) South Trib. Width (ft) 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.1 North Trib. Width (ft) End 2 End 1 3, D 4, D 6, D 7, D 8, D 2, C 3, C 4, C Fixed Beams

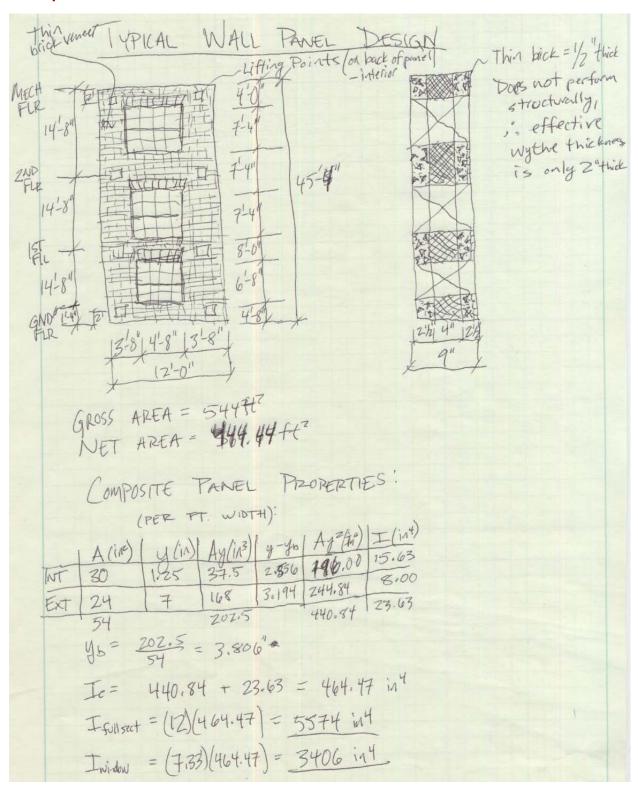
	8
	0000
	2
001	5
ž	Ü

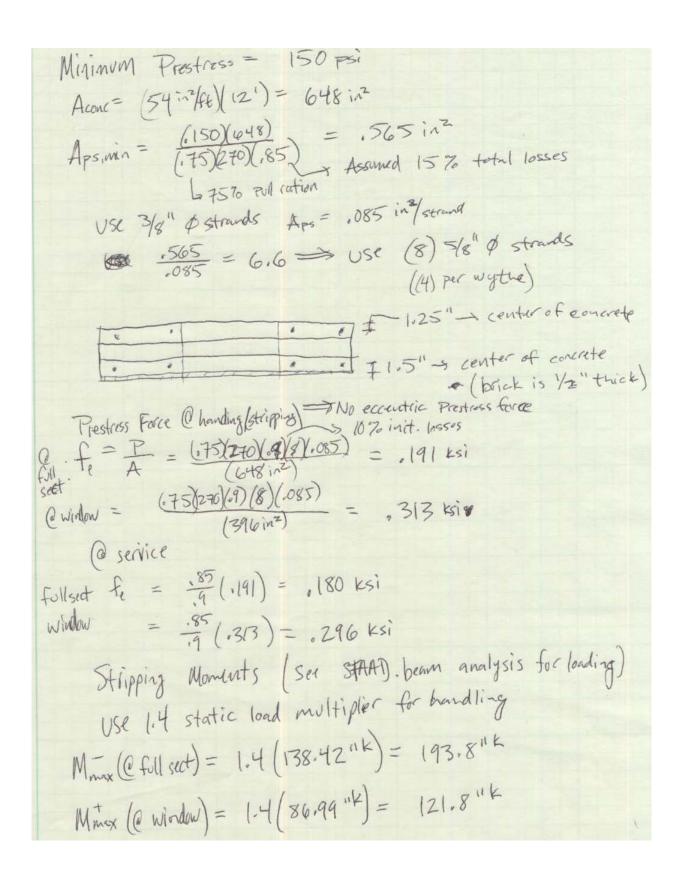
OK?	ŏ	Ŏ	ŏ	ŏ	š	ŏ	ŏ	ŏ	ŏ	š	ŏ	ŏ	ŏ	OK	š	ŏ	š	ŏ	ŏ	ŎĶ	OK	OK	OK	OK	ŏ	ŏ	š	ŏ	ò
New Total Deflection	0.847	0.684	0.684	0.374	1.065	0.843	0.684	0.050	0.006	0.738	0.121	0.121	0.738	0.006	0.703	0.703	0.970	0.130	1.065	0.843	0.931	0.943	0.628	0.628	0.067	0.492	0.158	0.628	0 402
(in ⁴)	375	301	301	301	301	301	301	301	301	301	301	301	301	301	301	301	375	301	301	301	375	375	301	301	301	301	301	301	201
ØM _p (ft- kips)	203	166	166	166	166	166	166	166	166	166	166	166	166	166	166	166	203	166	166	166	203	203	166	166	166	166	166	166	166
New Beam Size	W16x31	W16x26	W16x26	W16x26	W16x26	W16x26	W16x26	W16x26	W16x26	W16x26	W16x26	W16x26	W16x26	W16x26	W16x26	W16x26	W16x31	W16x26	W16x26	W16x26	W16x31	W16x31	W16x26	W16x26	W16x26	W16x26	W16x26	W16x26	30,711/1
I (in ⁴)	103	103	103	103	301	204	843	843	9.88	130	9.88	9.88	2850	9.88	9.88	9.88	843	43.8	301	204	9.88	199	9.88	9.88	9.88	9.88	9.88	9.88	9 88
ØM _p (ft- kips)	75.4	75.4	75.4	75.4	166	140	358	358	65.2	97.6	65.2	65.2	915	65.2	65.2	65.2	358	46.9	166	140	65.2	125	65.2	65.2	65.2	65.2	65.2	65.2	65.7
Orig. Beam Size	W12x16	W12x16	W12x16	W12x16	W16x26	W12x26	W21x44	W21x44	W12x14	W12x19	W12x14	W12x14	W12x19	W12x14	W12x14	W12x14	W21x44	W10x12	W16x26	W12x26	W12x14	W14x22	W12x14	W12x14	W12x14	W12x14	W12x14	W12x14	1117711
Total Defl. (in.)	3.083	1.998	1.998	1.092	1.065	1.244	0.244	0.018	0.020	1.708	0.410	0.410	0.078	0.020	2.389	2.389	0.431	068'0	1.065	1.244	3.942	1.777	2.134	2.134	0.229	1.671	0.538	2.134	1 571
Total Defl. Limit = L/240	1.054	1.054	1.054	1.054	1.242	1.171	1.054	0.625	0.446	1.5	0.954	0.954	1.5	0.446	0.954	0.954	1.2	0.625	1.2415	1.171	1.054	0.954	0.954	0.954	0.546	0.954	0.954	0.954	0.054
n, ()	52	35	35	97	33	9,	35	37	21	22	15	15	22	21	51	51	32	.7	33	9,	80	7.1	69	69	7.	08	32	69	
Max. M ₍	148.25	95.95	95.95	52.26	107.63	92.76	95.95	19.87	4.47	50.57	20.45	20.45	50.57	4.47	120.61	120.61	130.82	51.77	107.63	92.76	163.08	201.71	107.69	107.69	35.27	84.30	26.92	107.69	02 120
Additional M _u (ft-kips)																													
Self Wt. + plate (plf)	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	7.7
L, Span (ft)	21.08	21.08	21.08	21.08	24.83	23.42	21.08	12.5	8.92	30	19.08	19.08	30	8.92	19.08	19.08	24	12.5	24.83	23.42	21.08	19.08	19.08	19.08	10.92	19.08	19.08	19.08	10.02
(Jsd)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	75
(bsd)	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	82	82	85	85	85	85	85	85	95
South Trib. Width (ft)	18.17	11.54	11.54	9	9.21	9.21	5.54	6.54	2.54	2.54	2.54	2.54	2.54	2.54	15.5	15.5	6.63	15.5	0	0	13.42	12.42	0	0	0	0	0	0	C
North Trib. Width (ft)	0	0	0	0	0	0	9	0	0	0	0	0	0	0	2.54	2.54	5.54	2.54	9.21	9.21	6.63	18.17	16.04	16.04	16.04	12.42	3.54	16.04	17.17
End 2	69.33', 72.08'	90.42', 72.08'	299.33', 72.08'	320.42', 72.08'	0.8, 63.33'	48.25', 63.33'	320.42', 60.08'	332.92', 60.08'	3, 54.08'	4, 54.08'	148.42', 54.08'	7, 54.08'	8, 54.08'	278.25', 54.08'	148.42', D	7, D	9.8, D	332.92', 47.75'	0.8, 44.71'	48.25', 44.71'	69.33', 37.75'	318.42', 37.75'	148.42', 16.92'	7, 16.92'	280.25', 16.92'	2, 10.92'	88.42', 10.92'	9, 10.92'	10 01 10 01
End 1	48.25', 72.08'	69.33', 72.08'	278.25', 72.08'	299.33', 72.08' 320.42', 72.08	0.2, 63.33'	0.8, 63.33'	9, 60.08'	320.42', 60.08'	90.42', 54.08'	3, 54.08'	4, 54.08'	220.25', 54.08'	7, 54.08'	8, 54.08'	4, D	220.25', D	9, D	320.42', 47.75'	0.2, 44.71'	0.8, 44.71'	48.25', 37.75'	299.33', 37.75'	4, 16.92'	220.25', 16.92'	8, 16.92'	50.25', 10.92'	2, 10.92'	280.25', 10.92' 9, 10.92	,000,0
							Fix-Pin	Fix-Pin														Fix-Pin							ĺ
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_

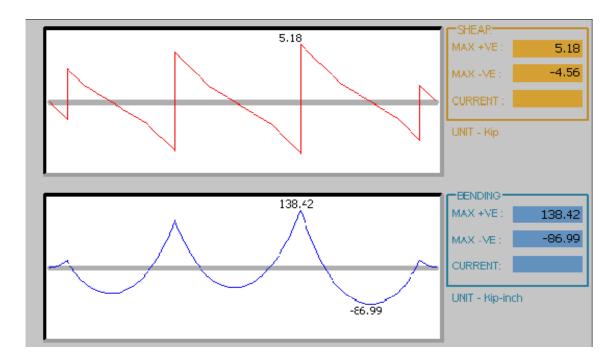
	-
	7
)	-
)	į
-	L

CYO	2	OK	Ö	OK	OK	OK	OK	ÖK
New Total	Deflection	0.544	0.515	0.515	0.515	0.542	0.446	0.446
		712	510	510	510	510	510	510
ØM _p (ft-	kips)	340	249	249	249	249	249	249
New Beam	Size	W18x46	W18x35	W18x35	W18x35	W18x35	W18x35	W18x35
1,50		068	890	890	890	068	068	068
ØM _p (ft-	kips)	420	420	420	420	420	420	420
Orig. Beam	Size	W18x55	W18x55	W18x55	W18x55	W18x55	W18x55	W18x55
		0.435	0.295	0.295	0.295	0.311		0.256
Total Defl.	Limit = L/240	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Max. M _u , end	(ft-kips)	297.52	201.67	201.67		212.32	174.62	174.62
M _u ,end	(ft-kips)	297.52	201.67	201.67	201.67	212.32	174.62	174.62
M Soismic	ויין, ספואווונ	5.71	3.53	3.47	4.60	4.62	3.31	4.82
Self Wt. +	plate (plf)	106	106	106	106	106	106	106
L, Span	(£	30	30	30	30	30	30	30
11	(bst)	25	25	25	25	25	25	25
DF	(psd)	82	85	85	85	85	85	85
South Trib.	Width (ft)	15.5	15.5	15.5	15.5	3.54	0	0
North Trib.	Width (ft)	11.54	2.54	2.54	2.54	15.5	15.5	15.5
- Pad 3	7 0113	3, D	4, D	8, D	9, D	3, C	4, C	8, C
7	Ī	2, D	3, D	7, D	8, D	2, C	3, C	2, C
	North Trib. South Trib. DL LL L, Span Self Wt. + An Cairmin Max. Muend Max. Muend Total Defi. Total Orig. Beam ØMp (ft- 1, 1, 4) New Beam ØMp (ft- 1, 1, 4) New Beam ØMp (ft- 1, 1, 4) New Total Defi.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	End 2 Worth Trib. South Trib. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	End 2 Worth Trib. South Trib. South Trib. (b) (b) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	End 2 Width (ft) South Trib. South Trib. (south Trib.) South Trib. (south Trib.) (sout	End 2 Worth Trib. South Trib.	End 2 Morth Trib. South Trib.	End 2 Worth Trib. Width (ft) South Trib. Width (ft) (psf) (psf) (psf) (ft) Lospan (psf) (psf) (psf) Mw. Seismic (ft-kips) Max. M., end (ft) Total Defice (por labs) Total Defice (por labs) Total Defice (por labs) Mint = L/240 Defice (por labs) Total Defice (por labs) Mint = L/240 Mint = L/240 Defice (por labs) Mint = L/240 Mint = L/240 Defice (por labs) Mint = L/240 Mint = L/240 <t< td=""></t<>

• Steel Columns


Г	OK?	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	¥	П	П
pPr+	b _x M _{rx}	0.979	0.983	0.864 OK	0.841 OK	0.913 OK	0.799 OK	0.779 OK	0.886 OK	0.889	0.987 OK	0.954 OK	0.984 OK	0.801	0.728 OK	0.989 OK	0.906 OK	0.912 OK	0.961	0.978	0.696 OK	0.636 OK	0.935 OK	0.998 OK	0.909 OK	0.999 OK	0.963	0.481 OK	0.984 OK	0.984 OK	0.580 OK	0.822 OK	0.843 OK	0.750 OK	0.843 OK	0.843 0	0.750 0	0.843 0		
$b_x (*10^3) = pF$	8/9¢M _{nx} b _x	3.07	3.07 0	3.45 0	3.45 0	5.26 0	5.26 0	3.45 0	3.45 0	2.62	3.07 0	2.02	2.02	5.26 0	5.26 0	3.07 0	2.31 0	1.29 0	1.52 0	4.58 0	5.26	5.26 0	4.01	1.29 0	1.29 0	2.64 0	4.01	5.26 0	4.01		5.26 0	3.45 0	5.26	3.45 0	5.26 0	5.26 0	3.45 0	5.26 0		
$p(*10^3) = b_x$	1/ØP, 8,	1.9	1.9	2.1	2.1	3.57	3.57	2.1	2.1	1.51	1.9	2.13	2.13	3.57	3.57	1.9	2.38	1.44	1.66	3.16	3.57	3.57	2.82	1.44	1.44	2.66	2.82	3.57	2.82	2.82	3.57	2.1	3.57	2.1	3.57	3.57	2.1	3.57		
New Col. p	Size	W12x58	W12x58	W12x53	W12x53	W12x40	W12x40	W12x53	W12x53	W12x65	W12x58	W12x96	W12x96	W12x40	W12x40	W12x96	W12x87	W12x120	W12x120	W12x45	W12x40	W12x40	W12x50	W12x136	W12x136	W12x79	W12x50	W12x40	W12x50	W12x50	W12x40	W12x53	W12x40	W12x53	W12x40	W12x40	W12x53	W12x40		
pPr+	b _x M _∞ OK?	0.701 OK	0.643 OK	0.864 OK	0.321 OK	0.538 OK	0.470 OK \	0.297 OK N	0.886 OK	0.730 OK N	0.707 OK	0.851 OK N	0.877 OK	0.474 OK	0.430 OK \	0.527 OK	1.020 NG! \	1.052 NG! N	1.245 NG! N	0.387 OK	0.249 OK \	0.228 OK	0.411 OK	1.498 NG! N	1.048 NG! N	0.999 OK \	1.255 NG! \	0.481 OK N	1.281 NG! N		0.580 OK \	1.297 NG! N	0.310 OK	0.443 OK	0.311 OK N	0.311 OK N	0.443 OK	0.310 OK \		
		2.33	2.1	3.45	1.32	3.45	3.45	1.32	3.45	2.1	2.33	1.77	1.77	3.45	3.45	1.69	2.64	1.52	2.02	2.1	2.1	2.1	2.1	2.02	1.52	2.64	5.26	5.26	5.26		5.26	5.26	2.1	2.1	2.1	2.1	2.1	2.1		
$p(*10^3) = b_x(*10^3) =$	1/ØP, 8/9ØM _{rx}	1.36	1.24	2.1	0.802	2.1	2.1	0.802	2.1	1.24	1.36	1.9	1.9	2.1	2.1	1.01	2.66	1.66	2.13	1.24	1.24	1.24	1.24	2.13	1.66	2.66	3.57	3.57	3.57	3.57	3.57	3.57	1.24	1.24	1.24	1.24	1.24	1.24		
Old Col. p	Size	W12x72	W12x79	2.1 W12x53	0.6 W12x120	2.8 W12x53	0.5 W12x53	0.4 W12x120	4.2 W12x53	1.3 W12x79	5.9 W12x72	7.8 W12x106	22.3 W12x106	8.1 W12x53	5.8 W12x53	28.7 W12x96	119.5 W12x79	5.4 W12x120	173.8 W12x96	10.1 W12x79	28.4 W12x79	25.9 W12x79	0.6 W12x79	186.2 W12x96	5.6 W12x120	114.0 W12x79	191.6 W12x40	0.0 W12x40	196.5 W12x40	196.5 W12x40	7.4 W12x40	165.7 W12x40	63.6 W12x79	0.1 W12x79	64.9 W12x79	64.8 W12x79	0.1 W12x79	W12x79		
	M _{ux} (ft-k)	3.8	11.1	2.1	0.6 ∿	2.8	0.5 \	0.4	4.2 V	1.3	5.9 V	7.8 \	22.3 V	8.1	5.8	28.7 V	119.5	5.4	173.8 V	10.1 V	28.4 V	25.9 V	0.6 V	186.2 V	5.6	114.0 V	191.6 V	0.0 V	196.5 V	196.5 №	7.4 V	165.7 V	63.6	0.1	64.9	64.8	0.1	63.7		
	P _u (k)	509.1	499.5	408.2	399.7	251.7	223.2	370.1	415.0	586.2			440.8	212.3	195.3	474.0		628.7			153.0	140.0	330.7	526.5	625.9		69.2			69.4	15 151.7	119.2	142.4	357.0	140.6	140.7	357.0	142.3		
	KL (ft)	15	15	15	15	15	15	15	15	15	15	30	30	15	15	15	30	30	30	15	15	15	15	30	30	30	15	15	15	15	15	15	15	15	15	15	15	15		
	L (ft)	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67		
K (Eff. Length	Factor)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	2.0	1.0	1.0	1.0	2.0	2.0	2.0	1.0	1.0	1.0	1.0	2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
	? Column	2 E	3 E	4 E	3 E	5.3 E	5.7 E	9 E	3 4	8 E	3 E	0.2 E.2	0.8 E.2	1.2 E.2	9.8 E.2	11 E.2	1 F	2 F	3 F	4 F	5 F	6 F	7 F	8 F	9 F	10 F	3 G	4 G	5 G	9 g	2 G	9 G	1 H	2 H	Э Н	н 8	9 н	10 H		
t	b _x M _{rx} OK?	0.640 OK	0.860 OK	0.603 OK	0.751 OK	0.731 OK	0.824 OK	0.550 OK	0.505 OK	0.548 OK	0.604 OK	0.565 OK	0.628 OK	0.887 OK	0.959 OK	0.976 OK	0.919 OK	0.977 OK	0.995 OK	0.952 OK	0.987 OK	0.871 OK	0.946 OK	0.912 OK	0.935 OK	0.701 OK	0.717 OK	0.960 OK	0.952 OK	0.931 OK	0.891 OK	0.913 OK	0.943 OK	0.944 OK	0.997 OK	0.947 OK	0.915 OK	0.995 OK	0.896 OK	0.869 OK
$b_x(*10^3) = ppr +$	8/9ØM _{rx} b _x n	5.26 0.	5.26 0.	5.26 0.	5.26 0.	5.26 0.	5.26 0.	5.26 0.	5.26 0.		5.26 0.	5.26 0.	5.26 0.	3.45 0.	0.97 0.	0.97 0.	1.12 0.	1.77 0.	1.77 0.	1.12 0.	0.97	1.52 0.	3.07 0.	2.02 0.	1.77 0.	5.26 0.	5.26 0.	2.02	3.45 0.		0.97 0.	1.12 0.	1.77 0.	4.58 0.	4.58 0.	1.77 0.	1.12 0.		0.97 0.	3.45 0.
10^3) = $b_x(^*)$	1/ØPn 8/9	3.57	3.57	3.57	3.57	3.57	3.57	3.57	3.57	3.57	3.57	3.57	3.57	2.1	1.11	1.11	1.26	1.9	1.9	1.26	1.11	1.66	1.9	2.13	1.9	3.57	3.57	2.13	2.1	1.26	1.11	1.26	1.9	3.16	3.16	1.9	1.26	1.26	1.11	2.1
New Col. p (*:	Size 1/		×40	×40	×40	×40	×40	×40	×40	×40	×40	×40	×40	x53	W12×170	W12×170	W12×152	W12×106	W12×106	W12x152	W12×170	W12×120	x58	96×	W12×106	×40	×40	96×	x53	W12x152	W12×170	W12×152	W12×106	x45	x45	W12×106	W12×152	W12x152	W12×170	x53
Nev	OK? S	< W12x40	< W12x40	< W12x40	W12x40	W12×40	W12x40	< W12x40	W12x40	< W12x40	< W12x40		W12x40	W12x53									< W12x58	×12×96			< W12x40		W12x53					< W12x45	W12x45					K W12x53
pPr +	b _x M _{rx}	0.566 OK	0.506 OK	0.211 OK	0.262 OK	0.279 OK	0.729 OK	0.550 OK	0.505 OK	0.548 OK	0.604 OK	0.565 OK	0.628 OK	0.645 OK	1.443 NG!	1.675 NG!	1.555 NG!	1.100 NG!	1.120 NG!	1.611 NG!	1.692 NG!	0.871 OK	0.765 OK	0.711 OK	0.816 OK	0.298 OK	0.305 OK	0.960 OK	0.690 OK	1.232 NG!	1.527 NG!	1.378 NG!	0.710 OK	0.633 OK	0.668 OK	0.713 OK	1.379 NG!	1.501 NG!	1.349 NG!	0.626 OK
$b_x (*10^3) = p_1$	8/9 ØM _{n×} b,	4.58	3.45	2.1 0	2.1 0	2.33	4.58	5.26	5.26	9	9	5.26	9	2.62	1.52	1.77	2.02	2.02	2.02	2.02	1.77	1.52	2.62	1.52	1.52		2.62	2.02	2.62	1.52	1.77	1.77	1.29	3.45	3.45	1.29	1.77	1.77	1.52	2.62
p (* 10 ³) = b	1/ØPn	3.16	2.1	1.24	1.24	1.36	3.16	3.57	3.57	3.57	3.57	3.57	3.57	1.51	1.66	1.9	2.13	2.13	2.13	2.13	1.9	1.66	1.51	1.66	1.66	1.51	1.51	2.13	1.51	1.66	1.9	1.9	1.44	2.1	2.1	1.44	1.9	1.9	1.66	1.51
Old Col.	Size	6.1 W12x45	0.5 W12x53	7.0 W12x79	5.9 W12x79	0.5 W12x72	6.8 W12x45	2.4 W12x40	0.8 W12x40	4.0 W12x40	3.0 W12x40	2.3 W12x40	1.5 W12x40	52.6 W12x65	131.8 W12x120	28.7 W12x106	14.7 W12x96	120.7 W12x96	119.0 W12x96	15.0 W12x96	20.0 W12x106	109.5 W12x120	72.9 W12x65	3.5 W12x120	25.4 W12x120	3.9 W12x65	4.6 W12x65	24.4 W12x96	38.1 W12x65	118.6 W12x120	13.0 W12x106	3.0 W12x106	101.8 W12x136	14.1 W12x53	14.0 W12x53	99.9 W12x136	4.0 W12x106	9.5 W12x106	125.9 W12x120	6.7 W12x65
Mux (ft.	k)	6.1	0.5	7.0 \	5.9	0.5	6.8	2.4	0.8	4.0\	3.0	2.3	1.5	52.6	131.8	28.7	14.7	120.7	119.0	15.0	20.0	109.5	72.9 \	3.5	25.4	3.9	4.6	24.4	38.1	118.6	13.0	3.0	101.8	14.1	14.0	١6:66	4.0	9.5	125.9 \	6.7
_	P. (K)	170.4	240.1	158.7	201.6	15 204.0	15 220.7	15 150.5	140.4	15 147.7	15 164.9	15 154.8	15 173.7	15 336.1	30 748.8	30 854.6	716.0	30 401.9		30 742.2	871.8	424.5	15 380.1	425.0	468.6	190.5	194.2	30 427.4	15 390.6		30 791.6	30 722.3	30 401.7	278.4	295.3	405.3	722.3		697.4	15 402.7
	KL (ft)	15	15	15	15	15	15	15	15	15	15	15	15	15	30	30	30	30	30	30	30	30	15	30	30	15	15	30	15	30	30	30	30	15	15	30	30	30	30	15
	L (ft)	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	2.0 14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67	1.0 14.67	14.67	14.67	14.67	2.0 14.67	14.67	14.67	14.67	14.67	14.67	14.67	14.67
K (Eff. Length	_	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.0	2.0	2.0	1.0	1.0	2.0	1.0	2.0	2.0 14.67	2.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	1.0
	Column	1 A	2 A	3 A	8 A	9 A	10 A	3.8 B	4.2 B	2 B	8 B	6.8 B	7.2 B	1 C	2 C	3 C	4 C	2 C	29	2 C	8 C	9 C	10 C	0.2 C.6	9.8 C.6	5 C.6	9.2 g	11 C.6	1.2 D	2 D	3 D	4 D	2 D	5.3 D	5.7 D	Q 9	2 D	8 D	Q 6	0.8 D


Braced Frames


Brace 1	3A - 3C	Orig. Size	Max. T _u (k)	Max. P _u (k)	New Size	A _g (in ²)	F _y (ksi)	ØT _n (k)	KL (ft)	ØP _n (k)	OK?
Base to	Brace	HSS10x10x1/2	167.06	152.01	HSS8x8x3/8	10.4	46	431	24	240	ОК
	Column 3A	W12x79	17.34	187.54	W12x40	11.7	50	527	15	280	ОК
1st Floor	Column 3C	W12x106	0	564.26	W12x170	50	50	2250	15	1790	ОК
1st Floor to	Brace	HSS8x8x5/8	124.3	98.14	HSS8x8x1/4	7.10	46	294	24	168	ОК
2nd Floor											
2nd Floor to	Brace	HSS8x8x5/16	85.63	50.7	HSS6x6x1/4	5.24	46	217	24	93.4	ОК
Mech. Floor											
Brace 2	5D - 5E	Orig. Size	Max. T _u (k)	Max. P _u (k)	New Size	A _g (in ²)	F _y (ksi)	ØT _n (k)	KL (ft)	ØP _n (k)	OK?
Base to	Brace	HSS8x8x5/16	96.91	126.87	HSS8x8x1/4	7.1	46	294	22	184	ОК
1st Floor	Column 5D	W12x136	0	384.22	W12x106	31.2	50	1404	15	1100	ОК
	Column 5E	W12x120	0	412.05	W12x53	15.6	50	702	15	477	ОК
1st Floor to	Brace	HSS8x8x5/16	96.18	146.39	HSS8x8x1/4	7.10	46	294	22	184	ОК
2nd Floor											
2nd Floor to	Brace	HSS8x8x1/4	64.6	127.99	HSS8x8x1/4	7.10	46	294	22	184	ОК
Mech. Floor											
-											
Brace 3	6D - 6E	Orig. Size	Max. T _u (k)	Max. P _u (k)	New Size	A _g (in ²)	F _y (ksi)	ØT _n (k)	KL (ft)	ØP _n (k)	OK?
Base to	Brace	HSS8x8x5/16	92.39	132.65	HSS8x8x1/4	7.10	46	294	22	184	ОК
1st Floor	Column 6D	W12x136	0	398.89	W12x106	31.2	50	1404	15	1100	ОК
	Column 6E	W12x120	0	401.8	W12x53	15.6	50	702	15	477	ОК
1st Floor to	Brace	HSS8x8x5/16	101.43	153.87	HSS8x8x1/4	7.10	46	294	22	184	ОК
2nd Floor											
2nd Floor to	Brace	HSS8x8x1/4	66.61	133.33	HSS8x8x1/4	7.10	46	294	22	184	OK
Mech. Floor											
Brace 1	3A - 3C	Orig. Size	Max. T _u (k)	Max. P _u (k)	New Size	A _g (in ²)	F _y (ksi)	ØT _n (k)	KL (ft)	ØP _n (k)	OK?
Base to	Brace	HSS10x10x1/2	225.13	206.5	HSS8x8x3/8	10.4	46	431	24	240	ОК
	Column 3A	W12x79	25.91	238.21	W12x40	11.7	50	527	15	280	ОК
1st Floor	Column 3C	W12x106	0	801.88	W12x170	50	50	2250	15	1790	ОК
1st Floor to	Brace	HSS8x8x5/8	186.56	142.57	HSS8x8x1/4	7.10	46	294	24	168	ОК
2nd Floor											
2nd Floor to	Brace	HSS8x8x5/16	119.35	68.93	HSS6x6x1/4	5.24	46	217	24	93.4	ОК
Mech. Floor		1	İ								1

Appendix D - Building Enclosures Breadth

Typical Wall Panel Design

STAAD.beam Output for Handling Shears and Moments

The character of the stresses

Limits

Tens =
$$f_r = 5 \lambda f_{ci} = 5(1.0) (3000) = .274 \text{ ksi}$$

(amp =) = .(a) $f_{ci} = .6(1.0) (3000) = 1.800 \text{ ksi}$

Top (Inner) Wythe @ full sect

St = $\frac{5574 \text{ in}^4}{3.7006} = 1465 \text{ in}^3$

Bot. (outer) Wythe @ window

St = $\frac{2406 \text{ in}^4}{8.5.3.806} = 7260 \text{ in}^3$
 $f_t = \frac{M}{S} = \frac{193.8^{11}}{1465 \text{ in}^3} = .132 \text{ ksi}^2$

Not = .132 - .191 = -.059 ksi (compr.) oku

Not = .132 - .191 = -.059 ksi (compr.) oku

Not = .132 - .191 = -.059 ksi (compr.) oku

Not = .168 - .313 = -.043 ksi (compr.) oku

WIND DESIGN OF CLADDING PANEL

WMAX = (1,15 psf +3.11 psf internal =

W = (1476 psf)(12') = (380 psf)

M = (1476 psf)(12') = (4.60 psf)(12') = (4.60 psf) = 5.72 psf

DNC!

F= +(01.77 psi - 191 psi = -0.129 psi (compt) oper

• R-Value Calculations

o Existing Walls

	Existing Walls	k	Thickness	U = k/t	R = 1/U	R = 1/U
	Insulated Path				Winter	Summer
Α	Outside Surface				0.25	0.17
В	4" Face Brick	9.1	4.0	2.28	0.44	0.44
С	1.5" Air Gap, $\epsilon_{\rm eff}$ = 0.82				0.90	0.90
D	1/2" Dens Glass Sheathing				1.32	1.32
Е	6" Batt Insulation, R19				19.00	19.00
F	5/8" Gyp. Wall Board			1.78	0.56	0.56
G	Inside Surface				0.68	0.68
	Total				23.15	23.07

	Existing Walls	k	Thickness	U = k/t	R = 1/U	R = 1/U
	Steel Stud Path				Winter	Summer
Α	Outside Surface				0.25	0.17
В	4" Face Brick	9.1	4.0	2.28	0.44	0.44
С	1.5" Air Gap, $\epsilon_{\rm eff}$ = 0.82				0.90	0.90
D	1/2" Dens Glass Sheathing				1.32	1.32
Е	6" Air Gap, $\epsilon_{\rm eff}$ = 0.15				2.11	2.11
F	5/8" Gyp. Wall Board			1.78	0.56	0.56
G	Inside Surface			·	0.68	0.68
	Total				6.26	6.18

	Existing Walls	k	Thickness	U = k/t	R = 1/U	R = 1/U
	Window Path				Winter	Summer
Α	Outside Surface				0.25	0.17
В	1" Insulated Window			0.35	2.86	2.86
С	Inside Surface				0.68	0.68
	Total				3.79	3.71

Typical Panel Area (SF) $\,\%\,\,{\rm A_g}$

Gross Area 544.00

 Window Area
 99.55
 18.30%

 Steel Stud Area
 20.83
 3.83%

 Insulated Area
 423.62
 77.87%

Total R-Value

Winter 11.35 ft².°F·hr/Btu

Summer 11.20 ft².°F·hr/Btu

o Proposed Wall Panels

	Sandwich Walls Panels	k	Thickness	U = k/t	R = 1/U	R = 1/U
	Insulated Path				Winter	Summer
Α	Outside Surface				0.25	0.17
В	1/2" Thin Brick	9.1	0.5	18.20	0.05	0.05
С	2" NWC	11.1	2.0	5.55	0.18	0.18
D	4" Expanded Polystyrene	0.2	4.0	0.05	20.00	20.00
Е	2.5" NWC	11.1	2.5	4.44	0.23	0.23
F	Inside Surface				0.68	0.68
	Total				21.39	21.31

	Sandwich Walls Panels	k	Thickness	U = k/t	R = 1/U	R = 1/U
	Uninsulated Path				Winter	Summer
Α	Outside Surface				0.25	0.17
В	1/2" Thin Brick	9.1	0.5	18.20	0.05	0.05
С	8.5" NWC	11.1	8.5	1.31	0.77	0.77
D	Inside Surface				0.68	0.68
	Total				1.75	1.67

	Sandwich Walls Panels	k	Thickness	U = k/t	R = 1/U	R = 1/U
	Window Path				Winter	Summer
Α	Outside Surface				0.25	0.17
В	1" Insulated Window			0.35	2.86	2.86
С	Inside Surface				0.68	0.68
	Total				3.79	3.71

Typical Panel Area (SF) $\,$ % $A_{\rm g}$

Gross Area 544.00

 Window Area
 99.55
 18.30%

 Uninsulated Area
 8.00
 1.47%

 Insulated Area
 436.45
 80.23%

Total R-Value

Winter 10.61 ft².°F·hr/Btu 6.53% less

Summer 10.44 ft².°F·hr/Btu 6.79% less

Appendix E - Construction Management Breadth

• Cost Analysis

υN	it Cost	it Cost Estimation								Equ	ivalent	Equivalent Square Foot Cost	oot Cost		Sch	edulin	Scheduling Info.
Old Structure - Composite Floor								S	Cost/SF		Floor	Floor Area (SF)		Total			
	Crew	Daily Output	Labor Hrs.	Unit Ma	Material La	-abor Ec	Equip. To	Total		1st Floor	2nd Floor	Mech. Floor	Roof	88,298 SF	Crews	Days	Labor Hrs.
Concrete, 4000 psi, slab <6", pumped	C-20	140	0.457	ζ	81.83	12.95	4.82	09.66	1.54	25943	20278	19281	0	\$100,682	1	7.22	415.76
18g. Composite Deck, 3" deep	E-4	009ε	0.009 SF	SF	2.01	0.32	0.03	2.36	2.36	25943	20278	19281	0	\$154,319	3	6.07	589.52
20g. Wide Rib Roof Deck, 1.5" deep	E-4	3865	0.008 SF	SF	1.73	0.33	0.02	2.08	2.08	0	11520	0	11276	\$47,416	3	1.97	182.37
WWF 6x6 W2.9xW2.9	2 Rodm	67	0.552 CSF	CSF	18.66	18.92		37.58	0.38	25943	20278	19281	0	\$24,614	3	7.53	361.57
Finish Floor, Monolithic Screed	1 Cefi	006	0.009 SF	SF		0:30		0:30	0:30	25943	20278	19281	0	\$19,582	10	7.28	589.52
Steel Beams	E-5			SF				8.92	8.92	25943	31798	19281	11276	\$787,200	1	20.69	1307.20
Steel Columns	E-2			SF				4.20	4.20	25943	31798	19281	11276	\$371,150	1	3.70	206.50
Shear Studs, 3/4" diam., 4-7/8" long	E-10			SF				0.16	0.16	25943	20278	19281	0	\$10,200			
Total									\$17.16	\$445,173	\$347,964	\$330,855	\$0	\$1,515,163		54.45	3652.42
				ŀ	ŀ	ŀ		f									
New Structure - Hollowcore Plank								S	Cost/SF		Floor,	Floor Area (SF)		Total			
	Crew	Daily Output	Labor Hrs.	Unit Ma	Material La	Labor Ec	Equip. To	Total		1st Floor	2nd Floor	2nd Floor Mech. Floor	Roof	88,298 SF	Crews	Days	Labor Hrs.
10" Hollowcore	C-11	0008	0.02 SF	SF	6.57	0.68	0.42	7.67	7.67	25943	31798	19281	11276	\$677,266	1	11.04	1765.96
2" Concrete Topping, 3000 psi, slab <6", pumped	C-20	140	0.457	C	77.20	12.95	4.82	94.97	0.59	25943	20278	19281	0	\$38,400	1	2.89	184.78
WWF 6x6 W1.4xW1.4	2 Rodm	32	0.457 CSF	CSF	12.36	15.82		28.18	0.28	25943	20278	19281	0	\$18,459	3	6.24	299.34
Finish Floor, Monolithic Screed	1 Cefi	006	O.009 SF	SF		0.30		0.30	0.30	25943	20278	19281	0	\$19,582	10	7.28	589.52
Steel Beams	E-5			SF				4.19	4.19	25943	31798	19281	11276	\$369,707	1	6.47	477.21
Steel Columns	E-2		.,	SF				4.76	4.76	25943	31798	19281	11276	\$420,502	1	3.69	204.98
Shear Studs, 3/4" diam., 4-3/16" long	Shop			SF				0.02	0.02	25943	31798	19281	11276	\$1,782			
5/8" Supporting A36 Steel Plate	Shop			SF				1.58	1.58	25943	31798	19281	11276	\$139,228			
1/4" A36 Bracket Plates	Shop			SF				0.20	0.20	25943	31798	19281	11276	\$17,631			
3/16" Fillet Welds	Shop			SF				0.35	0.35	25943	31798	19281	11276	\$31,256			
Total									\$19.64	\$509,415	\$624,383	\$378,600	\$378,600 \$221,415	\$1,733,813		37.59	3521.80

j	nit Cos	Unit Cost Estimation	ا							Equ	ivalent	Equivalent Square Foot Cost	oot Cost		Sch	eduli	Scheduling Info.
Old Walls - Stud Backup								J	Cost/SF		Wall	Wall Area (SF)					
	Crew	Daily Output	Labor Hrs.	Unit	Material	Labor E	Equip. T	Total		Story 2	2 Story	3 Story	Total		Crews	Days	Labor Hrs.
Scaffolding - Complete System rent/mo				CSF	34.50			34.50	0.35	4184	7107	19012	30303	\$10,455			
Scaffolding - labor erect/dismantle	3 Carp	8		3 CSF		114	1	114.00	1.14	4184	7107	19012	30303	\$34,546	:	12.63	3 909.10
16g. 6" Stl. Stud Wall, 16" O.C., 16' high	2 Carp	48	0.333 LF	LF	23.35	9.82		33.17	2.26	4184	7107	19012	30303	\$68,527		4 10.76	6 688.02
Standard 4" Face Brick Veneer, running bond	8-Q	230	0.174 SF	SF	2.71	5.42		8.13	8.13	4184	7107	19012	30303	\$246,234		3 43.92	7.272.7
6" Fiberglass Batt. Insulation, 15" wide	1 Carp	1150	0.007 SF	SF	0.58	0.24		0.82	0.82	4184	7107	19012	30303	\$24,922		3 8.78	8 212.12
Wall Ties	1 Bric			SF	0.05	0.12		0.14	0.14	4184	7107	19012	30303	\$4,274	1		
Shelf Angles	1 Bric			SF	0.87	92.0		1.63	1.63	4184	7107	19012	30303	\$49,364	1		
Acid Brick Wash, Smooth Brick	1 Bric	260	0.014 SF	SF	0.03	0.49		0.52	0.52	4184	7107	19012	30303	\$15,746		4 13.53	3 424.25
Joint Backer Rod	1 Bric			SF		0.09		0.09	0.09	4184	7107	19012	30303	\$2,645	6		
Sealant	1 Bric			SF	0.02	0.23		0.24	0.24	4184	7107	19012	30303	\$7,343	8		
Flashing, Aluminum	1 Carp			SF	0.09	0.27		0.36	0.36	4184	7107	19012	30303	\$11,041	1		
Sheathing, 1/2" Dens Glass	2 Carp	1050	0.015 SF	SF	0.50	0.40		0.90	06.0	4184	7107	19012	30303	\$27,409		4 7.22	2 454.55
Building Paper, Asphalt Felt, 15 lb.	1 Carp			SF	0.02	0.12		0.17	0.17	4184	7107	19012	30303	\$5,011	1		
5/8" Gypsum Wall Board, taped & finished	2 Carp	962	0.017	SF	0.33	0.44		0.77	0.77	4184	7107	19012	30303	\$23,461		3 10.47	7 515.16
Total									\$17.52	\$73,307	\$124,539	\$333,134		\$530,981		107.30	0 7566.87
Old Walls - CMU Backup								0	Cost/SF		Wall #	Wall Area (SF)					
	Crew	Daily Output	Labor Hrs.	Unit	Material	Labor E	Equip. T	Total	, ,	Story 2	2 Story	3 Story	Total		Crews	Days	Labor Hrs.
Scaffolding - Complete System rent/mo				CSF	34.50			34.50	0.35	00:00	3226	00.00	3226	\$1,113	8		
Scaffolding - labor erect/dismantle	3 Carp	8		3 CSF		114	1	114.00	1.14	00:00	3226	00.00	3226	\$3,678		3 1.34	4 96.78
Concrete Block Backup, Reinfinforced, 8" thick	D-8	395	0.101 SF	SF	1.71	3.16		4.88	0.33	00:00	3226	00.00	3226	\$1,072		3 2.72	2 325.83
Standard 4" Face Brick Veneer, running bond	D-8	230	0.174 SF	SF	2.71	5.42		8.13	8.13	00:00	3226	0.00	3226	\$26,214		3 4.68	8 561.34
1" Rigid Insulation, Perlite	1 Carp	800	0.01 SF	SF	0.30	0.34		0.64	0.64	00:00	3226	0.00	3226	\$2,059		2 2.02	32.26
Wall Ties	1 Bric			SF	0.02	0.12		0.14	0.14	00:00	3226	0.00	3226	\$455	10		
Shelf Angles	1 Bric			SF	0.87	0.76		1.63	1.63	00:00	3226	0.00	3226	\$5,255			
Acid Brick Wash, Smooth Brick	1 Bric	560	0.014 SF	SF	0.03	0.49		0.52	0.52	0.00	3226	0.00	3226	\$1,676		2 2.88	8 45.17
Joint Backer Rod	1 Bric			SF		0.09		0.09	0.09	00:00	3226	0.00	3226	\$282	0.1		
Sealant	1 Bric			SF	0.02	0.23		0.24	0.24	0.00	3226	0.00	3226	\$782	6		
Flashing, Aluminum	1 Carp			SF	0.09	0.27		0.36	0.36	0.00	3226	0.00	3226	\$1,175	.0		
Collar Joint	1 Bric			SF	0.04	0.11		0.15	0.15	00:00	3226	0.00		\$488	~		
5/8" Gypsum Wall Board, taped & finished	2 Carp	965	0.017	SF	0.33	0.44		0.77	0.77	0.00	3226	0.00	3226	\$2,498		3 1.11	1 54.84
Total									\$14.49	\$0	\$46,747	\$0		\$46,747		14.75	5 1019.44

New Walls - Sandwich Panels								Cost/SF		Wall A	Wall Area (SF)					
	Crew	Daily Output	Labor Hrs.	Unit	laterial II	Labor Hrs. Unit Material Installation Total	Total		1 Story	Story 2 Story 3 Story		Total	0	Crews Days	_	-abor Hrs.
9" Insulated Precast Sandwich Wall Panels with a	C-11	C-11 12 panels	72/day	SF	29.00	1.62	1.62 30.62	30.62		4184 10334	19012	33529	\$1,026,669	1	8.00	576.00
2.5" - 4" - 2.5" layup with 1/2" thin brick exterior					lucl)	Incl. O&P)		\$30.62								
Total before 30% O&P								\$23.55					\$789,745			

	olo.	Labor Hrs.	8.964	13 2.490	0.558	5.040	13 2.490	4.096	10 6.944	3.078	1.152	3.072	30 5.208	2.304	2.160	52 2.010	90 2.310	78 2.220	78 2.220	32 2.250	13 2.490	13 2.490	78 2.220	78 2.220		50 0.336	32 69.666	_
	Scheduling Info.	Crews Days	1 0.1125	1 0.0313	1 0.0100	1 0.0900	1 0.0313	1 0.0727	1 0.1240	1 0.0545	1 0.0205	1 0.0545	1 0.0930	1 0.0409	1 0.0270	1 0.0252	1 0.0290	1 0.0278	1 0.0278	1 0.0282	1 0.0313	1 0.0313	1 0.0278	1 0.0278	1 0.0240	1 0.0060	1.0482	
4.7209 0.000234 298.2341 0.014804		SF Average																									\$8.32 /SF	\$0.21 /SF
Total Days Days/SF Total Labor Hrs. Labor Hrs/SF	Total Cost	Beam Section Total	5334.76	1313.76	111.50	2919.91	1313.76	1232.86	4022.99	1507.33	426.60	924.64	3017.24	693.48	2220.46	2957.29	2523.58	2933.64	2933.64	1596.14	1313.76	1313.76	2933.64	2933.64	778.64	194.66	\$47,452	\$1,197
		Adjusted Tot.	49.40	43.79	18.58	32.44	43.79	19.26	32.44	27.91	23.70	19.26	32.44	19.26	74.02	98.58	84.12	97.79	97.79	53.20	43.79	43.79	97.79	97.79	32.44	32.44		1.44
\$8.92 /SF \$0.16 /SF \$4.20 /SF		Equip.	1.77	1.77	2.61	1.57	1.77	1.78	1.57	1.57	1.78	1.78	1.57	1.78	1.86	1.43	1.64	1.57	1.57	1.60	1.77	1.77	1.57	1.57	1.57	1.57		0.38
		Labor	3.53	3.53	3.91	2.34	3.53	5 2.66	0 2.34	5 2.34	0 2.66	5 2.66	0 2.34	5 2.66	3.27	0 2.85	3.27	3.14	3.14	3.19	3.53	3.53	3.14	3.14	0 2.34	0 2.34		0.76
ost d Cost ost		Material	48.50	42.50	14.50	31.50	42.50	16.95	31.50	26.65	21.70	16.95	31.50	16.95	75.00	102.00	86.00	100.80	100.80	53.00	42.50	42.50	100.80	100.80	31.50			09.0
ming C ear Stuo umn Co		Lab. Hrs.	0.083	0.083	0.093	0.056	0.083	0.064	0.056	0.057	0.064	0.064	0.056	0.064	0.072	0.067	0.077	0.074	0.074	0.075	0.083	0.083	0.074	0.074	0.056	0.056		
Total Area Average Framing Cost Average Shear Stud Cost Average Column Cost		Daily Output	096	096	009	1000	096	880	1000	066	880	880	1000	880	1110	1190	1036	1080	1080	1064	096	096	1080	1080	1000	1000		Shear Studs
	Unit Cost	Crew	E-5	E-5	E-2	E-2	E-5	E-2	E-2	E-2	E-2	E-2	E-5	E-2	E-5	E-2	E-2		<u> </u>									
		otal Studs	06	10	4	06	20	24	104	33	8	18	78	18	25	40	45	40	30	30	30	20	40	30	0	3	830	
\$179,598 \$3,137 \$84,677		Total Length T	108	30	9	06	30	64	124	54	18	48	66	36	30	30	30	30	30	30	30	30	30	30	24	9	1031	
	щ	Length Shear Studs 7	30	10	4	30	20	9	56	11	8	9	26	9	25	40	45	40	30	30	30	20	40	30	0	3		
eoff	5700 SF	ength S	36	30	9	30	30	16	31	18	18	16	31	12	30	30	30	30	30	30	30	30	30	30	24	9		
ning Tak t ost	Area =	Quantity Lo	3	1	1	3	1	4	4	3	1	3	3	3	1	1	1	1	1	1	1	1	1	1	1	1		
Old Steel Framing Takeoff Total Framing Cost Total Shear Stud Cost Total Column Cost	First Floor	Beam Designation	W18x40	W18x35	W10x12	W16x26	W18x35	W12x14	W16x26	W14x22	W12x19	W12x14	W16x26	W12x14	W24x62	W27x84	W18x71	W21x83	W21x83	W21x44	W18x35	W18x35	W21x83	W21x83	W16x26	W16x26		

ofu	s Labor Hrs.	25	303 1.710	200 6.720	303 1.710		3.360	313 2.490	109 2.304	727 2.160	200 6.720	282 2.640	273 7.168	12.152	3.456	3.072	282 2.250	290 2.160	303 1.710	329 2.640	290 2.310	290 2.310	282 2.250	313 2.490	290 2.310	270 2.160	329 2.640	290 2.310	290 2.310	300 1.680	0.336	110.454
Cchoduling Info	Crews Days	1 0.2625	1 0.0303	1 0.1200	1 0.0303	1 0.0252	1 0.0600	1 0.0313	1 0.0409	1 0.2727	1 0.1200	1 0.0282	1 0.1273	1 0.2170	1 0.0614	1 0.0545	1 0.0282	1 0.0290	1 0.0303	1 0.0329	1 0.0290	1 0.0290	1 0.0282	1 0.0313	1 0.0290	1 0.0270	1 0.0329	1 0.0290	1 0.0290	1 0.0300	1 0.0060	1.9021
	SF Average	o																														\$9.29 /SF
Total Cost	tion Total	99	837.41	3893.21	837.41	3293.53	1946.61	1313.76	693.48	2684.28	3893.21	1824.61	2157.50	7040.22	1040.22	924.64	1739.04	1969.77	837.41	2331.77	2425.51	2047.24	1596.14	1313.76	1977.19	2684.28	1690.11	2425.51	2047.24	973.30	194.66	\$69,69
	Adjusted Tot.	43.79	27.91	32.44	27.91	109.78	32.44	43.79	19.26	89.48	32.44	60.82	19.26	32.44	19.26	19.26	57.97	99:59	27.91	77.73	80.85	68.24	53.20	43.79	65.91	89.48	56.34	80.85	68.24	32.44	32.44	
	Eauip. /	1.77	1.57	1.57	1.57	1.43	1.57	1.77	1.78	1.53	1.57	1.86	1.78	1.57	1.78	1.78	1.60	1.53	1.57	1.86	1.64	1.64	1.60	1.77	1.64	1.53	1.86	1.64	1.64	1.57	1.57	
	Labor	3.53	2.34	2.34	2.34	2.85	2.34	3.53	2.66	3.06	2.34	3.72	2.66	2.34	2.66	2.66	3.19	3.06	2.34	3.72	3.27	3.27	3.19	3.53	3.27	3.06	3.72	3.27	3.27	2.34	2.34	
	Material	42.50	26.65	31.50	26.65	114.00	31.50	42.50	16.95	92.00	31.50	60.50	16.95	31.50	16.95	16.95	58.10	66.50	26.65	78.60	82.50	00'69	53.00	42.50	66.50	92.00	55.70	82.50	00.69	31.50	31.50	
	Lab. Hrs.	0.083	0.057	0.056	0.057	0.067	0.056	0.083	0.064	0.072	0.056	0.088	0.064	0.056	0.064	0.064	0.075	0.072	0.057	0.088	0.077	0.077	0.075	0.083	0.077	0.072	0.088	0.077	0.077	0.056	0.056	
	Daily Output		066	1000	066	1190	1000	096	088	110	1000	1064	088	1000	088	088	1064	1036	066	912	1036	1036	1064	096	1036	1110	912	1036	1036	1000	1000	
loi+ Coc+	. $lacksquare$	E-5	E-2	E-2	E-2	E-5	E-2	E-5	E-2	E-5	E-2	E-5	E-2	E-2	E-2	E-2	E-5	E-5	E-2	E-5	E-2	E-2										
	Total Studs	0	0	0	0	0	44	0	18	55	0	0	42	182	24	24	0	32	30	09	30	30	18	0	0	0	32	30	25	12	3	684
	Total Length	252	30	120	30	30	09	30	36	30	120	30	112	217	54	48	30	30	30	30	30	30	30	30	30	30	30	30	30	30	9	1625
5	ear Studs	_	0	0	0	0	22	0	9	22	0	0	9	56	8	9	0	32	10	20	30	30	18	0	0	0	35	30	25	12	3	
7500 SE	Length	36	30	30	30	30	30	30	12	30	30	30	16	31	18	12	30	30	10	30	30	30	30	30	30	30	30	30	30	30	9	
1 6020	Quantity	7	1	4	1	1	2	1	3	1	4	1	7	7	3	4	1	1	3	1	1	1	1	1	1	1	1	1	1	1	1	
Second Floor	Beam Designation	W18x35	W14x22	W16x26	W14x22	W27x94	W16x26	W18x35	W12x14	W24×76	W16x26	W21x50	W12x14	W16x26	W12x14	W12x14	W21x48	W24x55	W14x22	W18x65	W21x68	W21x57	W21x44	W18x35	W18x68	W24×76	W18x46	W21x68	W21x57	W16x26	W16x26	

Mech. Floor	Area =	4296 SF	3F			Unit Cost							Total Cost		Scheduling Info	fo.
Beam Designation	Quantity	Length	Length Shear Studs	Total Length	Total Studs	Crew	Daily Output	Lab. Hrs.	Material	Labor Equip.		Adjusted Tot.	Beam Section Total	SF Average	Crews Days	Labor Hrs.
W12x16	2	18	15	98	5 30	E-2	088	0.064	19.40	2.66	1.78	21.55	775.86		1 0.0409	2.304
W16x31	1	18	15	18	3 15	E-2	006	0.062	37.50	2.60	1.74	38.38	690.84		1 0.0200	1.116
W12x14	1,	18	10	18	3 10	E-2	088	0.064	16.95	2.66	1.78	19.26	346.74		1 0.0205	5 1.152
W16x26	1	18	10	18	3 10	E-2	0001	950'0	31.50	2.34	1.57	32.44	1 583.98		1 0.0180	1.008
W12x14	7	16	8	112	2 56	E-2	088	0.064	16.95	2.66	1.78	19.26	2157.50		1 0.1273	3 7.168
W21x57	2	31	20	9 65	2 40	E-5	1036	0.077	00.69	3.27	1.64	68.24	4230.97		1 0.0598	8 4.774
W18x35	5	31	24	155	5 120	E-5	096	0.083	42.50	3.53	1.77	43.79	6787.74		1 0.1615	5 12.865
W14x22	3	18	6	54	1 27	E-2	066	0.057	26.65	2.34	1.57	27.91	1507.33		1 0.0545	3.078
W12x14	4	12	9	48	3 24	E-2	088	0.064	16.95	2.66	1.78	19.26	924.64		1 0.0545	3.072
W24x55	1	30	25	30) 25	E-5	1036	0.072	09.99	3.06	1.53	99'59	1969.77		1 0.0290	0 2.160
W24x55	1	2	0		2 0	E-5	1036	0.072	09'99	3.06	1.53	99'59	131.32		1 0.0019	9 0.144
W12x26	1	10	10	10	01 10	E-2	088	0.064	31.50	2.66	1.78	32.85	328.53		1 0.0114	4 0.640
W21x50	1,	30	41	. 30) 41	E-5	1064	880'0	09.50	3.72	1.86	78'09	1824.61		1 0.0282	2 2.640
W24x68	2	30	30	09	09 0	E-5	1036	0.077	09.99	3.27	1.64	16:39	3954.39		1 0.0579	9 4.620
W21x50	1	30	20	30) 50	E-5	1064	0.088	60.50	3.72	1.86	60.82	1824.61		1 0.0282	2 2.640
W21x44	1.	30	40	30	0 40	E-5	1064	0.075	53.00	3.19	1.60	23.20	1596.14		1 0.0282	2 2.250
W24x68	2	30	30	09	09 0	E-5	1036	0.077	82.50	3.27	1.64	80.85	4851.03		1 0.0579	9 4.620
W21x44	1,	30	30	30	30	E-5	1064	0.075	53.00	3.19	1.60	23.20	1596.14		1 0.0282	2 2.250
W16x26	1	30	14	30	14	E-2	1000	0.056	31.50	2.34	1.57	32.44	973.30		1 0.0300	0 1.680
				833	3 662								\$37,055	\$8.63 /SF	0.8170	57.877
							Shear Studs		09'0	0.76	0.38	1.44	\$954	\$0.22 /SF		

Roof	Area =	2649 SF	SF			Unit Cost							Total Cost		Scheduling Info.	Info.	
Beam Designation	Quantity	Length	Shear Studs	Total Length	Total Studs (Crew	Daily Output	Lab. Hrs.	Material	Labor E	Equip. △	Adjusted Tot.	Beam Section Total	SF Average	Crews Days	s Labor Hrs.	· Hrs.
W10x12	3	3 21.08	0	63.25	0	E-2	009	0.093	14.50	3.91	2.61	18.58	1175.37		1 0.1054		5.882
W10x12	4	19.08	0	76.33	0	E-2	009	0.093	14.50	3.91	2.61	18.58	1418.50		1 0.1272		7.099
W10x12	4	10.92	0	43.67	0	E-2	009	0.093	14.50	3.91	2.61	18.58	811.46		1 0.0728		4.061
W12x26	1	19.08	0	19.08	0	E-2	880	0.064	31.50	2.66	1.78	32.85	626.95		1 0.0217		1.221
W12x14	1	19.08	0	19.08	0	E-2	088	0.064	16.95	2.66	1.78	19.26	367.61		1 0.0217		1.221
W12x14	1	10.92	0	10.92	0	E-2	880	0.064	16.95	2.66	1.78	19.26	210.29		1 0.0124		0.699
W12x14	1	8.92	0	8.92	0	E-2	880	0.064	16.95	2.66	1.78	19.26	171.77		1 0.0101		0.571
W12x16	4	08 1	0	120	0	E-2	880	0.064	19.40	2.66	1.78	21.55	2586.21		1 0.1364	364	7.680
W12x14	1	08	0	30	0	E-2	880	0.064	16.95	2.66	1.78	19.26	577.90		1 0.0341		1.920
W12x19	1	30	0	30	0	E-2	880	0.064	23.00	2.66	1.78	24.91	747.42		1 0.0341		1.920
W12x16	2	21.08	0	42.17	0	E-2	880	0.064	19.40	2.66	1.78	21.55	908.76		1 0.0479		2.699
W14x22	2	7.08	0	14.17	0	E-2	066	0.057	26.65	2.34	1.57	27.91	395.44		1 0.0143		0.807
W14x22	2	16	0	32	0	E-2	066	0.057	26.65	2.34	1.57	27.91	893.23		1 0.0323		1.824
W21x44	1	1.08	0	7.08	0	E-5	1064	0.075	53.00	3.19	1.60	53.20	376.87		1 0.0067		0.531
W21x44	1	31	0	31	0	E-5	1064	0.075	53.00	3.19	1.60	53.20	1649.34		1 0.0291		2.325
W18x35	1	7.08	0	7.08	0	E-5	096	0.083	42.50	3.53	1.77	43.79	310.19		1 0.0074		0.588
W18x35	2	31	. 0	62	0	E-5	096	0.083	42.50	3.53	1.77	43.79	2715.10		1 0.0646	546	5.146
W18x35	1	1.08	0	1.08	0	E-5	096	0.083	42.50	3.53	1.77	43.79	47.44		1 0.0011	111	0.090
W18x35	1	5.08	0	5.08	0	E-5	096	0.083	42.50	3.53	1.77	43.79	222.61		1 0.0053		0.422
W18x50	1	31	. 0	31	0	E-5	912	0.088	60.50	3.72	1.86	60.82	1885.43		1 0.0340		2.728
W18x50	1	1.08	0	1.08	0	E-5	912	0.088	60.50	3.72	1.86	60.82	65.89		1 0.0012		0.095
W18x50	1	5.08	0	5.08	0	E-5	912	0.088	60.50	3.72	1.86	60.82	309.17		1 0.0056		0.447
W18x40	2	30	0	09	0	E-5	096	0.083	48.50	3.53	1.77	49.40	2963.75		1 0.0625		4.980
W18x55	2	30	0	09	0	E-5	912	0.088	66.50	3.72	1.86	66.42	3985.46		1 0.0658		5.280
				780.08	0								\$25,422	\$9.60 /SF	0.9536		60.237
							Shear Studs		0.60	0.76	0.38	1.44	\$0	\$0.00 /SF			

New Steel Framing Takeoff		Total Area	20,145 SF		
Total Framing Cost	\$84,348	Average Framing Cost	\$4.19 /SF	Total Days	1.4751
Total Shear Stud Cost	\$406	Average Shear Stud Cost	\$0.02 /SF	Days/SF	7.32217E-05
Total 5/8" Plate Cost	\$31,765	Average 5/8" Plate Cost	\$1.58 /SF		
Total Bracket Plate Cost	\$4,022	Average Bracket Plate Cost	\$0.20 /SF	Total Labor Hrs.	108.875
Total Fillet Weld Cost	\$7,131	Average Fillet Weld Cost	\$0.35 /SF	Labor Hrs/SF	0.00540
Total Column Cost	\$95,937	Average Column Cost	\$4.76 /SF		

																				Ī
First Floor	Area =	5700 SF							Unit Cost							Total Cost		Scheduling Info.	g Info.	
Beam Desig.	Quantity	Length Shear Studs	No. Plates	Tot. Length	Tot. Studs	Tot. PL. Length	No. Brackets	Weld Length	Crew	Daily Output	Lab. Hrs.	Unit Ma	Material La	Labor Eq	Equip. Adjusted Tot.	Beam Sect. Tot.	ot. SF Avg.	Crews	Days Labor Hrs.	Hrs.
W21x55		1 30 5	1	30	5	30	15	13.75	E-5	1064	1 0.075 LF	5	66.50	3.19	1.60 65	65.81 197	1974.41	1 0.	0.0282	2.250
W18x35		2 30 7	0	09	14	0	0	0	E-5	096	0.083	5	42.50	3.53	1.77 43	43.79 262	2627.51	1 0.	0.0625	4.980
W12x14		9 1	0	9	3	0	0	0	E-2	088	0.064	T.	16.95	2.66	1.78	19.26	115.58	1 0.	0.0068	0.384
W24x84		2 30 5	2	09	10	120	09	52	E-5	1080	0.074 LF	J.	102.00	3.14	1.57	98.91	5934.53	1 0.	0.0556	4.440
W24x68		2 30 5	2	09	10	120	09	52	E-5	1110	0.072 LF	J.	82.50	3.06	1.53 80	80.60 483	4836.18	1 0.	0.0541	4.320
W24x62		2 30 7	2	09	14	120	09	22	E-5	1110	0.072 LF	- II	75.00	3.06	1.53 73	73.60 441	4415.88	1 0.	0.0541	4.320
W21x44		2 30 7	1	09	14	09	30	27.5	E-5	1064	1 0.075 LF	T.	53.00	3.19	1.60 53	53.20 319	3192.28	1 0.	0.0564	4.500
W16x50		1 18 4	0	18	4	0	0	0	E-2	800	20'0	I.F	48.50	2.93	1.96 49	49.08	883.42	1 0.	0.0225	1.260
W16x26		1 24 7	1	24	7	24	12	11	E-2	1000	0.056	T.	31.50	2.34	1.57 32	32.44	778.64	1 0.	0.0240	1.344
W16x26		1 6 2	1	9	2	9	3	2.75	E-2	1000	950:0	- II	31.50	2.34	1.57 32	32.44	194.66	1 0.	0900:0	0.336
Totals				384	83	480 ft	240	220 ft								\$24,953	953 \$4.38		0.3701	28.134
									3/4"x3-7/8"	3/4"x3-7/8" Shear Studs		Ea.	0.54	0.75	0.38	1.38 \$:	\$114 \$0.02	12		
						320 SF			"8/2x"8	8"x5/8" Steel Plate		SF	24.25		22	22.65 \$7,	\$7,248 \$1.27	2		
							53 SF		8"x8"x1/4"	8"x8"x1/4" Triang. Bracket Plates		SF	9.70		5	90.6	\$483 \$0.08	8		
									3/16"	3/16" Fillet Welds		11	0.38	4 47	1 19	473 \$1(\$1 041 \$0 18	×		

Second Floor	Area =	7500 SF	SF							Unit Cost							Total Cost		Sched	Scheduling Info.	
Beam Desig.	Quantity	Length	Length Shear Studs	No. Plates	Tot. Length	Tot. Studs	Tot. PL. Length	No. Brackets	Weld Length		Daily Output	Lab. Hrs.	Unit	Material La	Labor Equip.	p. Adjusted Tot.	Beam Sect. Tot.	SF Avg.		Crews Days	Labor Hrs.
W21x55	1	1 30	5	1	30	5	30	15	13.75	E-5	1064	0.075	LF.	66.50	3.19 1	1.60 65.81	1974.41	1	``	0.0282	2.25(
W24x76	1	1 30	5	0	30	2	0	0	0	E-3	0111	0.072	- 17	92.00	3.06	1.53 89.48	48 2684.28	8		0.0270	2.160
W12x14	1	1 6	ε	0	٤	3	0	0	0	E-2	088	0.064	- 17	16.95	2.66 1	1.78 19.26	26 115.58	8		0.0068	786.0
W24x84	(*)	3 30	5	2	06	15	180	06	82.5	E-3	0801	0.074 LF	- 17	102.00	3.14 1	1.57 98.91	91 8901.79	6		0.0833	99.9
W24x68	,	2 30	5	2	09	10	120	09	52	E-3	1110	0.072	- 17	82.50	3.06	1.53 80.60	60 4836.18	8		0.0541	4.320
W24x62	,7	2 30	4	2	09	14	120	09	52	E-2	1110	0.072	J.	75.00	3.06	1.53 73.60	60 4415.88	8		0.0541	4.320
W21x44	_	1 30	7	1	30		30	15	13.75	E-5	1064	0.075	5	53.00	3.19 1	1.60 53.20	20 1596.14	4		0.0282	2.250
W24x55	_	1 30	7	1	30	7		15	13.75	E-5	1100	0.072	5	66.50	3.06	1.53 65.66	1969.77	_		0.0273	2.160
W24x76	_	1 30	2	2	30	5	09	30	27.5	E-5	1110	0.072	<u>"</u>	92.00	3.06	1.53 89.48	48 2684.28	8		0.0270	2.160
W16x36	_	1 18	4	0	18		0	0	0	E-2	006	0.063	5	43.50	2.60 1	1.74 43.98	98 791.71	1		0.0200	1.13
W16x26	_	1 24	7	1	24		24	1 285	261.25	E-2	1000	0.056	5	31.50	2.34 1	1.57 32.44	44 778.64	4	Ì	0.0240	1.34
W16x26	Ī	1 6	2	1	۲	, 2	9	555	508.75	E-2	1000	0.056 LF	1	31.50	2.34	1.57 32.44	44 194.66	9		0.0060	0.33
Totals					414	1 84	600 ft	t 1125	1031.25 ft								\$26,285	\$3.50	0	0.3860	29.478
										3/4"x3-7/8"	3/4"x3-7/8" Shear Studs		Ea.	0.54	0.75 0	0.38 1.3	1.38 \$116	\$ \$0.02	2		
							400 SF	D		"8/2x"8	8"x5/8" Steel Plate		SF	24.25		22.65	090'6\$ \$9	\$1.21	L		
								250 SF		8"x8"x1/4"	8"x8"x1/4" Triang. Bracket Plates		SF	9.70):6	9.06 \$2,265	\$ \$0.30			
										3/16"	3/16" Fillet Welds		1	0.38	4.47	1.19 4.7	4.73 \$4,878	3 \$0.65			
Mech. Floor	Area =	4296 SF	SF							Unit Cost							Total Cost		Sched	Scheduling Info	
Beam Desig.	Quantity		Length Shear Studs	No. Plates	Tot. Length	Tot. Studs	Tot. PL. Length	No. Brackets Weld Length		Crew	Daily Output	Lab. Hrs.	Unit Material	aterial La	Labor Equip.	 Adjusted Tot. 	. Beam Sect. Tot.	SF Avg.	Crews	Crews Days	Labor Hrs.
W24x55	?	2 30	7	1	09	14	09	30	30	E-5	1100	0.072	- 17	66.50	3.06	1.53 65.66	3939.54	4	` .	1 0.0545	4.320
W24x55	1	1 2	7	1	. 7	2 7	2	. 1	1	E-5	1100	0.072 LF	I.	66.50	3.06	1.53 65.66	66 131.32	2	``	1 0.0018	0.144
W16x26	1	1 18	5	0	18		0	0	0	E-2	1000	0.056 LF	ı,	31.50	2.34 1	1.57 32.44	44 583.98	8	` '	0.0180	1.008
W24x76	.,	5 30	5	2	150		300	150	150	E-5	1110		H.	92.00	3.06	1.53 89.48	48 13421.41	1	` '	0.1351	10.800
W21x44	1	1 30	7	1	30		30	15	15	E-5	1064	0.075 LF	4	53.00	3.19 1	1.60 53.20	20 1596.14	4		0.0282	2.250
W16x31	1	1 24	9	1	24	1 6	24	1 12	12	E-2	006	0.062	LF	37.50	2.60 1	1.74 38.38	38 921.12	2	` '	0.0267	1.488
W16x26	1	1 6	2	1	ę	5 2	9	3	3	E-2	1000	0.056 LF	-F	31.50	2.34 1	1.57 32.44	44 194.66	2	` '	0.0060	0.336
Totals					290	99 (822 ft	t 461	211 ft								\$22,666	\$3.42	61	0.2704	20.346
										3/4"x3-7/8"	3/4"x3-7/8" Shear Studs		Ea.	0.54	0.75 0	0.38 1.3	1.38 \$91	\$0.01			
							616.50 SF			8/sx6	9"x5/8" Steel Plate		SF	24.25		22.65	65 \$13,963	\$1.86	.0		
								129.66 SF		9"x9"x1/4"	9"x9"x1/4" Triang. Bracket Plates		SF	9.70).6	9.06 \$1,175	\$0.16	.0		
										3/16"	2/16" Eillo+ Wolds		- 21	00.0	1 200	01.1	2005	\$ ¢0.13	L		

					Unit Cost							Total Cost	Sc	Scheduling Info	Э.
ot. Length To	Tot. Studs	ds Tot. PL. Length	h No. Brackets	Weld Length	Crew	Daily Output La	Lab. Hrs. Unit	it Material	Labor	Equip.	Adjusted Tot.	Beam Sect. Tot. SF	SF Avg. Cr	Crews Days	Labor Hrs.
21.08		6 21	21.08 10.54	99'6	E-2	1000	0.056 LF	31.50	2.34	1.57	32.44	684.02		1 0.0211	1.181
30		7	08 09	27.5	E-2	912	0.088 LF	26.00	3.53	1.77	56.40	1692.03		1 0.0329	2.640
06			180	82.5	E-2	096	0.083 LF	42.50	3.53	1.77	43.79	3941.27		1 0.0938	7.470
31		8	0 0	0	E-2	096	0.083 LF	42.50	3.53	1.77	43.79	1357.55		1 0.0323	2.573
7.08		2	0 0	0	E-2	096	0.083 LF	42.50	3.53	1.77	43.79	310.19		1 0.0074	0.588
31		9	0 0	0	E-2	912	0.088 LF	66.50	3.72	1.86	66.42	2059.15		1 0.0340	2.728
31		9	0 0	0	E-2	912	0.088 LF	60.50	3.72	1.86	60.82	1885.43		1 0.0340	2.728
19.08			19.08	8.75	E-2	1000	0.056 LF	31.50	2.34	1.57	32.44	619.13		1 0.0191	1.069
8.92			8.92	4.09	E-2	1000	0.056 LF	31.50	2.34	1.57	32.44	289.29		1 0.0089	0.499
10.92			10.92 5.46	5.00	E-2	1000	0.056 LF	31.50	2.34	1.57	32.44	354.17		1 0.0109	0.611
23.08		7	0 0	0	E-2	880	0.064 LF	26.50	3.91	2.61	29.79	687.67		1 0.0262	1.477
09		14	09	27.5	E-2	1000	0.056 LF	31.50	2.34	1.57	32.44	1946.61		1 0.0600	3.360
7.08		2	0 0	0	E-2	880	0.064 LF	26.50	3.91	2.61	29.79	211.02		1 0.0080	0.453
16.00		2	0 0	0	E-2	880	0.064 LF	26.50	3.91	2.61	29.79	476.66		1 0.0182	1.024
31.00		7	0 0	0	E-5	880	0.064 LF	16.95	5 2.66	1.78	19.26	597.17		1 0.0352	1.984
7.083		2	0 0	0	E-5	1064	0.075 LF	53.00	3.19	1.60	53.20	376.85		1 0.0067	0.531
252.25		62 9	99 ft 49.46	45.34 ft								\$7,444	\$0.99	0.4486	30.917
					3/4"x3-7/8"	3/4"x3-7/8" Shear Studs	Ea.	0.54	1 0.75	0.38	1.38	\$85	\$0.01		
		65.94 SF	1 SF		8"x5/8"	8"x5/8" Steel Plate	SF	24.25			22.65	\$1,494	\$0.20		
			10.99 SF		8"x8"x1/4"	8"x8"x1/4" Triang. Bracket Plates	Plates SF	9.70	0		90.6	\$100	\$0.01		
					3/16"	3/16" Fillet Welds	4	0.38	3 4.47	1.19	4.73	\$214	\$0.03		

Total Area Total Column Cost Average Column Cost Old Column Takeoff

20145 SF \$84,677 \$4.20 /SF

Total Days Days/SF

0.8442 4.19038E-05

47.1120 0.00234 Labor Hrs/SF

Total Labor Hrs.

				Unit Cost							Total Cost	Scheduling Info.	ng Info.	
Col. Designation Quantity		Height	Total Height	Crew	Daily Output	Lab. Hrs. Unit	: Material	Labor	Equip.	Equip. Adjusted Tot.	Col. Sect. Total	Crews	Days	Labor Hrs.
W12×120	2	57.33	114.67 E-2	. E-2	096	0.058 LF	145	2.44	1.63	138.58	15890.06	Ţ	0.1194	6.651
W12×106	3	57.33	,	172 E-2	096	0.058 LF	128	2.44	1.63	122.70	21104.07	Ţ	0.1792	9.976
W12x96	1	57.33	57.33 E-2	E-2	096	0.058 LF	116	2.44	1.63	111.49	6392.10	Ţ	1 0.0597	3.325
W12x72	1	57.33	57.33 E-2	E-2	984	1 0.057 LF	87	2.38	1.59	84.33	4834.74		0.0583	3.268
W12x79	3	44		132 E-2	984	1 0.057 LF	95	2.38	1.59	91.80	12117.44	Ţ	0.1341	7.524
W12x53	2	44		88 E-2	1032	2 0.054 LF	64	2.27	1.52	62.71	5518.10	Ţ	0.0853	4.752
W12×120	1	29.33	29.33 E-2	E-2	096	0.058 LF	145	2.44	1.63	138.58	4064.90	Ţ	0.0306	1.701
W12x96	2	29.33	58.67 E-2	, E-2	096	0.058 LF	116	2.44	1.63	111.49	6540.75		0.0611	3.403
W12x79	2	29.33	58.67 E-2	, E-2	984	1 0.057 LF	95	2.38	1.59	91.80	5385.53	Ţ	9650.0	3.344
W12x40	2	29.33	58.67 E-2	' E-2	1032	2 0.054 LF	48.50	2.27	1.52	48.23	2829.42	1	0.0568	3.168
Totals	19		826.67								\$84,677		0.8442	47.112

New Column Takeoff

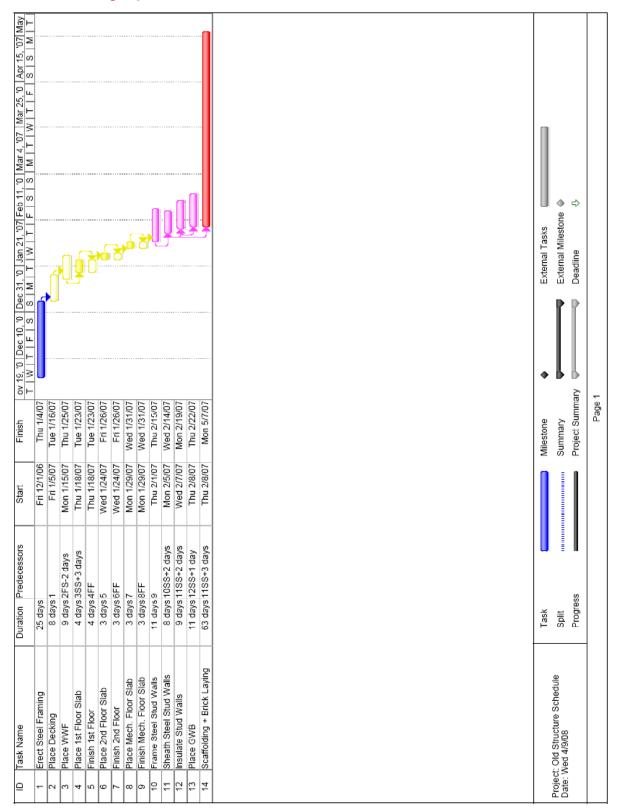
20145 SF \$95,937 \$4.76 /SF Total Area Total Column Cost Average Column Cost

Total Days Days/SF Total Labor Hrs.

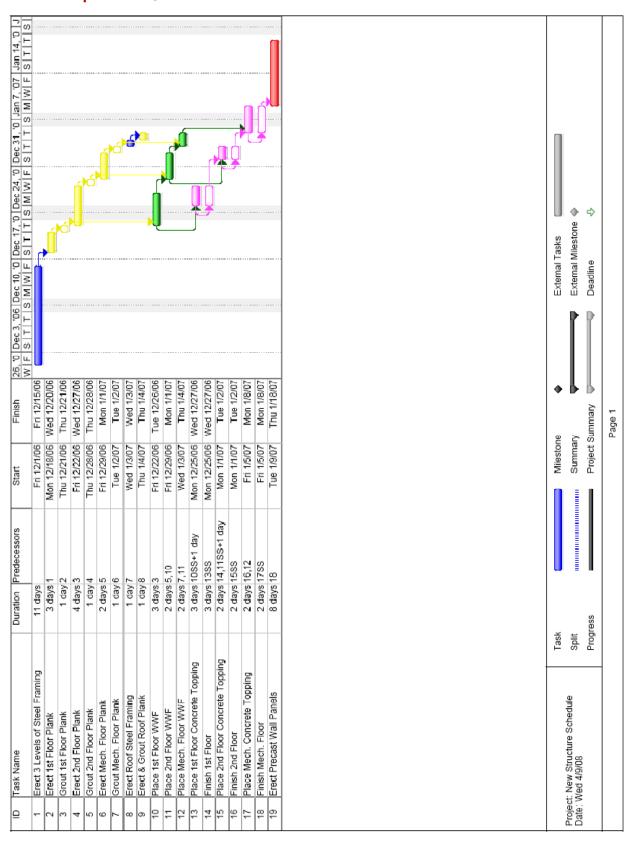
0.8411 4.17515E-05 46.7667 0.00232 Labor Hrs/SF

				Unit Cost							Total Cost	Scheduling Info.	g Info.	
Col. Designation Quantity Height Total Height	Quantity	Height	Total Height	Crew	Daily Output	Lab. Hrs. Unit	: Material	Labor	Equip.	Labor Equip. Adjusted Tot.	Col. Sect. Total	Crews	Days	Labor Hrs.
W12x170	3	57.33	172.00 E-2	E-2	925	0.060 LF	506	2.53	1.69	195.67	33654.56	1	0.1859	10.320
W12x152	3	57.33		172 E-2	686	0.059 LF	184	2.50	1.67	175.08	30113.66	1	0.1832	10.148
W12x58	1	57.33	57.33 E-2	E-2	1032	0.054 LF	70	2.27	1.52	68.31	3916.42	T	0.0556	3:096
W12x58	1	44		44 E-2	1032	0.054 LF	70	2.27	1.52	68.31	3005.63	1	0.0426	2.376
W12x53	1	44	44	E-2	1032	0.054 LF	64	2.27	1.52	62.71	2759.05	1	0.0426	2.376
W12x40	3	44		132 E-2	1032	0.054 LF	48.50	2.27	1.52	48.23	6366.18	1	0.1279	7.128
W12x120	2	29.33	58.67 E-2	E-2	096	0.058 LF	145	2.44	1.63	138.58	8129.80	1	0.0611	3.403
W12x53	1	29.33	29.33 E-2	E-2	1032	0.054 LF	64	2.27	1.52	62.71	1839.37	1	0.0284	1.584
W12x50	1	29.33	29.33 E-2	E-2	1032	0.054 LF	60.50	2.27	1.52	59.44	1743.48	1	0.0284	1.584
W12x45	1	29.33	29.33 E-2	E-2	1032	0.054 LF	54.50	2.27	1.52	53.83	1579.09	1	0.0284	1.584
W12x40	2	29.33	58.67 E-2	E-2	1032	0.054 LF	48.50	2.27	1.52	48.23	2829.42	1	0.0568	3.168
	19		826.67								\$95 937		0.8411	46 7667

Wall Area Takeoff


3 Story Walls	
Stud Backup	
Perimeter =	434.00
Height =	45.33
Gross Area =	19674.67
Total W.S.O. =	662.56
Net Area =	19012.11

2 Story Walls	
1/2 CMU Backup	
Perimeter =	233.77
Height =	15.33
Gross Area =	3584.49
Total W.S.O. =	358.40
Net Area =	3226.09
1/2 Stud Backup	
Perimeter =	233.77
Height =	14.67
Gross Area =	3428.64
Total W.S.O. =	550.67
Net Area =	2877.97
Full Stud Backup	
Perimeter =	221.46
Height =	30.00
Gross Area =	6643.75
Total W.S.O. =	2414.22
Net Area =	4229.53


1 Story Walls	
Stud Backup	
Perimeter =	286.00
Height =	18.17
Gross Area =	5195.67
Total W.S.O. =	1012.00
Net Area =	4183.67

Schedule Comparison

Existing System Schedule

Proposed System Schedule

